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Abstract

Molecule-centric scientific discovery relies on accurate
molecular understanding and effective targeted editing. Al-
though recent advances in large reasoning models have
demonstrated significant performance advantages in natural
language and vision-language tasks, existing approaches have
yet to explore biomedical multimodal reasoning. In this pa-
per, we introduce BioMedGPT-R1, a biomedical multimodal
reasoning model, and investigate its capabilities in molecu-
lar understanding and editing. The model is trained using a
three-stage ‘see-understand-edit’ learning strategy. This ap-
proach guides the model to first ‘see’ the molecule, then ‘un-
derstand’ it, and finally ‘edit’ it. The strategy comprises three
key components: cross-modal alignment, multimodal super-
vised fine-tuning for efficient molecular understanding, and
multimodal reinforcement learning for explainable molecular
editing. To facilitate model evolution, we design specific in-
struction templates, a answer template, and a reward system.
Experimental results demonstrate its effectiveness and high-
light the power of multimodal reasoning in advancing molec-
ular scientific discovery.

Introduction

Molecules are the fundamental tokens of the language of
chemistry, and molecule-centric scientific discovery relies
on two key capabilities: (1) accurate understanding of a
given molecule and (2) effective editing to achieve a spe-
cific objective. Current scientific research is predominantly
conducted in an expert-in-the-loop manner. Thanks to the
emergence of biomedical large language models (LLMs)
(Luu and Buehler 2024; Wu et al. 2023; Fang et al. 2023),
human experts can now directly discuss with them to gain
domain-specific insights. Biomedical multimodal large lan-
guage models (Liu et al. 2024; Li et al. 2024; Luo et al.
2024) further bridge the gap between molecular language
and natural language. Cross-modal translation enables these
models to: (1) more effectively describe molecules using
natural language, thereby enhancing experts’ understanding
of molecular structures and properties, and (2) better com-
prehend natural language instructions from experts, facili-
tating precise molecular editing, which better supports sci-
entific discovery focused on molecules.

Inspired by the recent advancements in reasoning mod-
els (Jaech et al. 2024; Shao et al. 2024; Guo et al. 2025)
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(o] BioMedGPT-R1: Alright, so I'm trying to figure out how to generate a new

(@Z))  molecule that can bind with DNA-PK, starting from the given molecule. Let me
break this down. First, I need to understand what DNA-PK is. ... Looking at the
original molecule, it seems to have a bicyclic structure with a fluorine and
hydroxyl group attached. ... One approach is to alter the substituents on the
aromatic rings. ... <answer> Nclnenc2clc(-cleee(Cl)e(O)el)nn2CCICCNCCI
</answer> This modification creates a structurally similar yet distinct molecule
that may exhibit different binding affinities towards DNA-PK.

Figure 1: Chat with BioMedGPT-R1 for molecule-centric
scientific discovery. Aiming to develop a biomedical re-
search assistant with a deep and comprehensive understand-
ing of both natural language instructions and biomolecules,
we explore biomedical multimodal reasoning for molecular
understanding and editing in this paper.

that have demonstrated significant performance improve-
ments in natural language processing (NLP) tasks, a ques-
tion naturally arises: Can reasoning models further facilitate
molecule-centric scientific discovery? Specifically, can mul-
timodal reasoning enhance performance in molecular un-
derstanding and targeted editing? However, existing mul-
timodal reasoning models are predominantly focused on
vision-language tasks (Chen et al. 2025; Yang et al. 2025;
Huang et al. 2025; Shen et al. 2025), while biomedical mul-
timodal reasoning remains largely unexplored. Vision, as an
intuitive modality for describing the physical world, inher-
ently possesses superior semantic properties, enabling it to
align well with natural language and fully leverage the rea-
soning capabilities of LLMs. In contrast, the semantic infor-
mation of the molecular modality is more abstract.

Therefore, biomedical multimodal reasoning faces three
main challenges: (1) achieving high-level cross-modal align-



ment between molecular representations and the semantic
feature space that reasoning LLMs can effectively utilize;
(2) enabling efficient molecular understanding through con-
trollable reasoning behaviors—such as implicit and explicit
thinking—within an acceptable computational budget; and
(3) developing explainable molecular editing that can gener-
ate valid, improved molecules with explicit explanations.

To address these challenges, we introduce BioMedGPT-
R1, a biomedical multimodal reasoning model, and investi-
gate its capabilities in molecular understanding and editing.
As illustrated in Figure 1, our goal is to develop a biomedi-
cal research assistant that possesses a deep and comprehen-
sive understanding of both instructions and biomolecules,
thereby facilitating real-world applications. BioMedGPT-
R1 integrates a reasoning LLM, off-the-shelf representation
learning encoders for biomolecules, and modality-specific
translators that convert biomedical representations into vir-
tual tokens understandable by the LLM.

To leverage natural language reasoning capabilities and
incorporate molecular multimodal knowledge, we propose
a three-stage ‘see-understand-edit’ training strategy. First,
we fine-tune the molecular translator using a molecule cap-
tion dataset with special tokens to achieve high-level cross-
modal alignment. Next, both the translator and the reasoning
LLM are trained with multimodal question-answering pairs
to enhance their multimodal understanding capabilities, uti-
lizing a pre-defined answer template to enable efficient
molecular understanding. Finally, we construct a molecu-
lar editing dataset specifically designed for reinforcement
learning, along with an instruction template and reward sys-
tem, to encourage the model to explore multimodal reason-
ing with the objective of editing a given molecule to meet a
specific instruction. We evaluate BioMedGPT-R1 on molec-
ular understanding and editing tasks. The experimental re-
sults demonstrate its effectiveness and highlight the power
of multimodal reasoning in advancing molecular scientific
discovery. Our contributions are summarized as follows:

* We propose BioMedGPT-R1, a biomedical multimodal
reasoning model designed to assist biomedical research,
and investigate its capabilities in molecular understand-
ing and editing.

e We present a three-stage training strategy to facili-
tate cross-modal alignment, multimodal understanding
and reasoning. The model is trained to first ‘see’ the
molecule, then to ‘understand’ it, and finally to ‘edit’ it.

* We validate the effectiveness of the proposed approach
through compreshensive experiments and demonstrate
the potential of biomedical multimodal reasoning for ad-
vancing molecular scientific discovery.

Related Work
Biomedical cross-modal alignment

Inspired by the success of vision-language alignment (Liu
et al. 2023a; Bai et al. 2025; Chen et al. 2024; Fan et al.
2025), several studies have explored cross-modal align-
ment strategies to jointly model biomolecules and natu-
ral language. Three mainstream technical paradigms have

emerged: (1) Contrastive Learning. These approaches align
biomolecular representations with natural language in fea-
ture space through contrastive learning techniques (Su et al.
2022; Liu et al. 2023b). (2) ‘Language’ Translation. Another
line of research treats the string format of biomolecules as a
unique language and translates it using a unified language
model (Edwards et al. 2022a; Pei et al. 2023). (3) Represen-
tation Translation. Recent works have explored translating
biomolecular representations into tokens that can be pro-
cessed by LLMs. For example, GIT-Mol (Liu et al. 2024)
incorporates multilevel molecular information, including 1D
SMILES, 2D graphs, and images. 3D-MoLM (Li et al. 2024)
connects 3D molecular conformations with natural language
by integrating a 3D molecular encoder. BioMedGPT (Luo
et al. 2024) employs a cross-attention projector to transform
biomolecular representations into a fixed number of tokens.
We leverage both SMILES strings and encoded molecular
graph features as representations of the input molecule, and
the cross-modal alignment is achieved in a hybrid manner
that combines explicit molecular language (SMILES) trans-
lation and implicit feature translation. We introduce special
tokens and corresponding instruction template to help the
LLM identify and understand the molecular representations.

Reasoning models

To endow models with System 2-type decision-making ca-
pabilities (Kahneman 2011), early attempts explored reason-
ing models through prompt engineering, such as chain-of-
thought (CoT) (Wei et al. 2022) and Tree-of-Thought (ToT)
(Yao et al. 2023). Subsequently, some works enhanced step-
by-step reasoning through procedure-level supervised fine-
tuning (Lightman et al. 2023; Gao et al. 2024). Recently, re-
inforcement learning has been adopted to encourage models
to explore better outcomes via Group Relative Policy Opti-
mization (GRPO) (Shao et al. 2024).

Leveraging the power of reasoning LLMs, several studies
have explored Vision-Language reasoning models. For ex-
ample, R1-V (Chen et al. 2025) introduced GRPO into VLM
training for object-counting tasks. R1-OneVision (Yang
et al. 2025) constructed a visual reasoning dataset, on which
the VLM was first trained before the reinforcement learn-
ing stage. Similarly, Vision-R1 (Huang et al. 2025) cre-
ated a multimodal CoT dataset for initial fine-tuning, fol-
lowed by a GRPO training stage to further strengthen multi-
modal reasoning capabilities. Curr-ReFT (Deng et al. 2025)
introduced a three-stage reinforcement learning approach
with progressively increasing difficulty-level rewards, while
VLM-RI1 (Shen et al. 2025) provided a more comprehensive
investigation of vision-centric multimodal reasoning. How-
ever, most of these studies have focused on vision-based
mathematics and visual perception tasks. The intriguing yet
challenging domain of biomedical multimodal reasoning re-
mains largely unexplored. In this paper, we propose a three-
stage training strategy to achieve multimodal reasoning in a
progressive manner for molecular editing task. The model is
trained to first ‘see’ the molecule, then to “‘understand’ it, and
finally to ‘edit’ it. A molecular editing dataset is constructed,
and we design specific instruction template and reward sys-
tem to facilitate model evolution.
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Figure 2: The three-stage ‘see-understand-edit’ training strategy for BioMedGPT-R1, including cross-modal alignment, multi-
modal supervised finetuning, and multimodal reinforcement learning. The model is trained to first ‘see’ the molecule, then to

‘understand’ it, and finally to ‘edit’ it.

Methodology

In this section, we first introduce the model architecture of
BioMedGPT-R1, followed by a detailed presentation of the
three-stage training strategy.

Model Architecture

BioMedGPT-R1 is a multimodal reasoning LLLM that aims
at comprehending molecules and natural language texts. The
molecule is formulated as a 1D SMILES string S and a 2D
graph G = {V, £}, where V represents atoms and & rep-
resents bonds. The natural language text is formulated as a
series of tokens 7.
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Figure 3: Model architecture of BioMedGPT-R1, compris-
ing a molecule encoder, a translator module, and an LLM.

As illustrated in Figure 3, BioMedGPT-R1 comprises
three main components: a molecule encoder, a molecular
translator, and a large language model. Specifically, the
molecule encoder is a 5-layer GIN (Xu et al. 2018) ini-
tialized with the pre-trained checkpoint of GraphMVP (Liu
et al. 2021). It encodes the molecular graph G into a dense
representation H,, € RIVIXdm  where d,, denotes the
hidden dimension. The LLM, named BioMedGPT-R1-LM,
adopts the same architecture as Qwen2-14B (Team 2024;
Guo et al. 2025), a decoder-based Transformer model. To

bridge the modality gap, the molecular translator is imple-
mented as a multi-layer perceptron, which aligns the molec-
ular representation with the feature space of the LLM’s input
embeddings. This architecture, though simple, proves effec-
tive. We enhance the multimodal reasoning capability in a
progressive manner via the three-stage training strategy.

Three-stage ‘see-understand-edit’ training strategy

Drawing inspiration from the cognitive process of human
experts, we propose a three-stage training strategy that
guides the model to first ‘see’ the molecule, then ‘under-
stand’ it, and finally ‘edit’ it, as illustrated in Figure 2.

Cross-modal alignment To enable BioMedGPT-R1-LM
to ‘see’ the molecular representation encoded by the
molecule encoder, we first focus on cross-modal alignment.
We fine-tune the molecule translator while keeping the other
modules frozen.

<molecule> {molRepHere} </molecule>
<SMILES> {molSmilesHere} </SMILES>
{question}.

Specifically, we perform fine-tuning using the molecule
caption dataset ChEBI-20 (Edwards et al. 2022b) to align
the molecular dense representation H,, with the high-level
semantic feature space of the LLM’s input embeddings. To
mitigate the catastrophic forgetting problem that can oc-
cur when aligning the LLM with molecular representations,
we design a instruction template that organizes the aligned
virtual token embeddings and the natural language ques-
tion in an instruction-following manner. We introduce spe-
cial tokens <molecule>, </molecule>, <SMILES>,
</SMILES> to help the LLM identify the start and end
of the molecular representation or the 1D SMILES rep-
resentation. The prompt template is structured as shown
in the box above. Here, {molRepHere} is populated
by the aligned virtual tokens generated by the translator,
{molSmilesHere} is populated by the SMILES strings,



and {question} is populated by the natural language in-
struction. This approach ensures that the LLM can effec-
tively integrate molecular information with natural language
instructions.

Multimodal supervised fine-tuning for molecular under-
standing To equip BioMedGPT-R1 with a deep and holis-
tic understanding of molecules and enable it to generate in-
sightful descriptions of a given molecule, we perform super-
vised fine-tuning on the molecule understanding task. Both
the molecular translator and the LLM are trained using a
molecule question-answering dataset.

<think> Okay, the user provided both molecu-
lar representation and SMILES notation. SMILES
is a way to represent chemical structures using text
strings. Now, the user is asking me to describe this
drug. To do that, I need to figure out its structure,
properties, uses, and perhaps its role in the body or
in medical applications. </think> Here is a brief
description of this drug. {answer}

After the initial cross-modal alignment training, the
model can already describe the given molecule in an explicit
thinking manner. However, considering the high computa-
tional cost associated with the reasoning-for-understanding
setting, we design a pre-defined answer template to enable
an implicit thinking mode for the understanding task, as il-
lustrated in the box above. Here, {answer} is populated by
the expected answer. By simulating a brief reasoning pro-
cess, we guide the model to describe the given molecule
more efficiently. The combination of the instruction and the
answer template allows the LLM to generate descriptions
through implicit reasoning over the molecular representa-
tion in an auto-regressive manner. This approach not only
maintains the model’s original explicit reasoning capability
but also enables developers to manage and control reasoning
behaviors within an acceptable computational budget.

The training objective is calculated as follows:

N
L= Lop(f([Hm: STy Ap Aiis Ai) - (1)
i=1

where 7 and A, are the instructiona and pre-defined answer
template, IV is the length of the answer, and [ is position
where the answer starts.

Dataset construction for molecule editing To explore the
multimodal reasoning capability in the context of molecular
editing tasks, we have constructed a dataset specifically de-
signed for reinforcement learning. Molecular editing for a
given objective is inherently a one-to-N task, where mul-
tiple solutions may exist for the same goal. This charac-
teristic makes reinforcement learning a more suitable ap-
proach compared to supervised fine-tuning. Specifically, if
the model’s predicted editing result matches any of the po-
tential acceptable answers, it should receive a reward.

We built the dataset based on FS-Mol (Stanley et al.
2021), and the editing tasks encompass five major cate-
gories: ADME (absorption, distribution, metabolism, and
excretion), binding, functional, physicochemical property,
and toxicity. Each data pair in the dataset consists of a source
molecule, an instruction, and a list of acceptable editing re-
sults. An example is provided as follows.

Source molecule: COclcccc(Nc2nee3nce(-c4ecc(F)
ccd)c(=0)n(CCC#N)c3n2)cl

Instruction: Edit it and generate a new molecule
that has activity in a gHTS assay for Anthrax Lethal
Toxin Internalization.

Acceptable results: COclcccc(Ne2nee3nc(-c4cce
(F)ccd)e(=0)n(C)c3n2)cl, COcleceec(Ne2nee3nce(-
cdec(F)ec(F)ed)c(=0)n(CCC#N)c3n2)cl

Multimodal reinforcement learning for molecular edit-
ing We employ the GRPO algorithm (Shao et al. 2024) to
update the model parameters and design a specific instruc-
tion template and reward system tailored for the molecular
editing task.

Instruction template. We design an instruction template
incorporating the aforementioned special tokens and provid-
ing a clear description of the requirements for molecular
editing, as shown in the following box.

<molecule> {molRepHere} </molecule>
<SMILES> {molSmilesHere} </SMILES>
{question}. The original molecule is given be-
tween <molecule> and </molecule>, and
the SMILES of it is between <SMILES> and
</SMILES>. {editInstruction}. The generated
molecule should NOT be the same as the original
one. Please first thinks about the reasoning pro-
cess in the mind and then give the SMILES of
the generated molecule as your answer between
<answer> and </answer>, i.e., <think>
reasoning process here </think><answer>
SMILES here </answer>.

Here, {editInstruction} is populated by the specific
editing instruction. The model is tasked with editing the
source molecule to generate a new one, while explicitly de-
tailing the reasoning process. For ease of post-processing,
the editing result should be enclosed between <answer>
and </answer>.

Format reward checks whether the response follows the
specified format that requires the model to output the rea-
soning process in the <think> tag and the editing result in
the <answer> tag, returning 0.5 for each compliance.

Accuracy reward evaluates the acceptability of the
model’s editing results from multiple perspectives. If an
<answer> tag is present in the response, the strings en-
closed within the tag are parsed. The accuracy reward then



Table 1: Performance on Molecular Understanding. All metrics are in %.

Methods BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
3D-MoLM (Li et al. 2024) 6.7 3.0 12.1 4.2 8.6 18.3
Mol-Instructions (Fang et al. 2023) 24.9 17.1 33.1 20.3 28.9 27.1
GIT-Mol (Liu et al. 2024) 35.2 26.3 57.5 48.5 56.0 43.0
BioMedGPT (Luo et al. 2024) 30.6 19.8 44.7 25.7 38.3 35.0
BioMedGPT-R1 38.3 27.3 51.7 33.1 44.8 43.1

includes three checks: validity, improvement, and exact

Evaluation metrics.

We adopt the evaluation metrics used

matching. If no <answer> tag is found, the entire response
is used to calculate the Levenshtein distance with the first
molecular SMILES in the acceptable results list. This ap-
proach encourages the model to output results in the re-
quired format. Validity check assesses whether the edit-
ing result is structurally valid using RDKit. A valid result
returns a score of 0.5. For valid editing results, we deter-
mine the groundtruth molecule based on fingerprint similar-
ity. The most similar molecule in the acceptable results list
is considered the groundtruth. If the predicted molecule is
more similar to the groundtruth than the source molecule, it
indicates effective editing, and the model receives an 0.25
score for passing improvement check. If the prediction ex-
actly matches the groundtruth, an additional 0.25 reward is
awarded for passing exact matching check.

The multi-level accuracy reward system is designed
to encourage BioMedGPT-R1 to output valid, improved
molecules while adhering to the required format.

Experiments

In this section, we evaluate BioMedGPT-R1 on molecu-
lar understanding and editing tasks and present an in-depth
analysis of the experimental results.

Performance on Molecular Understanding

Molecular understanding aims to describe the molecule in
natural language and provide comprehensive information
about the given molecule for human experts. For this task,
we utilize the widely adopted ChEBI-20 dataset (Edwards
et al. 2022b) for both training and evaluation. BioMedGPT-
R1 is fine-tuned for 50 epochs with a learning rate of
7 x 10~° and a batch size of 8. To reduce training costs, we
apply low-rank adaptation (LoRA) to the BioMedGPT-R1-
LM. Additionally, we perform linear warmup for the first 3
epochs and a cosine annealing strategy to stabilize training.

Baselines. We compare the performance of BioMedGPT-
R1 with several representative biomedical multimodal meth-
ods. These include GIT-Mol (Liu et al. 2024), which incor-
porates multilevel molecular information; 3D-MolLM (Li
et al. 2024), which leverages 3D molecular conforma-
tions; and BioMedGPT (Luo et al. 2024), which aligns
molecular representations with a fixed number of virtual
tokens. Additionally, we report the performance of Mol-
Instructions (Fang et al. 2023), a biomedical LLM baseline
fine-tuned on a comprehensive instruction-tuning dataset.

in ChEBI-20 (Edwards et al. 2022b), including BLEU-2,
BLEU-4, ROUGE-2, ROUGE-L, and METEOR.

Results and analysis. We compare BioMedGPT-R1 with
the baselines in Table 1. BioMedGPT-R1 demonstrates pre-
dictive power on molecular understanding. There are two
key observations. (1) Impact of input molecular information:
The type of molecular information used significantly affects
understanding performance. For example, 3D-MoLM (Li
et al. 2024) primarily relies on 3D molecular conforma-
tions, which increases the difficulty of alignment from
structural feature space to semantic one. In contrast, Mol-
Instructions (Fang et al. 2023) leverages the SMILES rep-
resentation widely adopted in papers and patents, facilitat-
ing a more natural translation from molecular SMILES lan-
guage to the natural language. This approach results in per-
formance advantages over 3D-MoLM. GIT-Mol (Liu et al.
2024) incorporates multiple types of molecular information,
including 1D SMILES, 2D graphs, and images, allowing the
model to understand molecules from various perspectives.
Given that molecular images are a less detailed represen-
tation compared to molecular graphs, BioMedGPT-R1 only
uses SMILES and encoded graph representations, achieving
more accurate molecular descriptions (higher BLEU scores).
(2) Reasoning capability enhances molecular understanding.
Compared to BioMedGPT (Luo et al. 2024), the introduc-
tion of a reasoning large language model in BioMedGPT-R1
leads to significant improvements across all evaluation met-
rics. In turn, robust biomedical multimodal understanding
serves as the foundation for more complex multimodal rea-
soning tasks, such as molecular editing.

Performance on Molecular Editing

Molecular editing aims to edit and generate a new molecule
based on a given natural language instruction from human
experts. To facilitate this task, we constructed an editing
dataset (as described in Methodology Section) and split
it into training and evaluation subsets. We ensured that
molecules in the acceptable list for evaluation did not ap-
pear in the training set. The test set consists of 897 molec-
ular editing cases. When training BioMedGPT-R1 with re-
inforcement learning, we adopt the default GRPO parame-
ter settings, with NV set to 4 and the temperature set to 1.0.
The model is trained for 4,000 steps at a learning rate of
1 x 1072, To reduce training costs, we apply low-rank adap-
tion (LoRA) to the BioMedGPT-R1-LM.

Baselines. We focus primarily on comparing the perfor-
mance of biomedical multimodal reasoning with that of text-



only natural language reasoning, a comparison that has not
yet been thoroughly explored in existing work. To ensure a
fair comparison, we utilize BioMedGPT-R1-LM as the base-
line model. In this setup, only molecular SMILES strings are
fed into the reasoning language model, and the same instruc-
tion template and reward system are employed.

Evaluation Metrics. We evaluate the models to assess
their ability to generate valid and improved molecules ac-
cording to the given editing instructions. Specifically, we
parse the output molecule enclosed between <answer>
and </answer>, and conduct both validity and improve-
ment checks. The groundtruth molecule is determined based
on fingerprint similarity, with the most similar molecule
in the provided acceptable list being regarded as the
groundtruth. We calculate three key metrics: validity rate
(VR), success rate (SR), and exact matching rate (EMR).

Nvalid
VR=—— 2)
Ntest
where Nyesr = 897 and N,,q144 is the number of valid cases,

with validity verified using RDKit.

SR — Nimpraved (3)
Ntest
where Nimproved TEpresents the number of successful im-
proved cases. Specifically, if the output molecule is more
similar to the groundtruth than the source molecule, it is
classified as a successful case.

NezactMatching (4)
Ntest

where NegactMatching denotes the number of cases where
the predictions exactly match the groundtruth.

EMR =

Table 2: Performance on Molecular Editing. EMR: Exact
Matching Rate. SR: Success Rate. VR: Validity Rate. All
metrics are in %.

Methods EMR SR VR

BioMedGPT-R1-LM 1.8 10.8  93.1

BioMedGPT-R1 29 12.6  93.1
improvement +61.1 +16.6 -

Results and analysis. We compare BioMedGPT-R1 with
BioMedGPT-R1-LM in Table. 2. The experimental results
demonstrate that biomedical multimodal reasoning can sig-
nificantly enhance molecular editing performance. Three
key observations are highlighted. (1) Both models are ca-
pable of generating valid molecules, with no significant ad-
vantage observed for the multimodal model. This suggests
that contemporary language models can already effectively
model SMILES strings, likely due to their frequent presence
in molecule-related papers and patents, which are leveraged
as pretraining data for LLMs. (2) Biomedical multimodal
reasoning significantly improves editing quality. Compared
to BioMedGPT-R1-LM, BioMedGPT-R1 achieves substan-
tial performance improvements, with a 61.1% increase in

exact matching rate and a 16.6% increase in success rate.
(3) Despite these advancements, molecular editing remains a
challenging task. Generating improved molecules that meet
expectations is still difficult for both models, indicating that
the diverse editing objectives place high demands on the
LLM’s internal knowledge. We speculate that incorporat-
ing additional inputs from external environments using RAG
techniques or in-domain tools could bring significant im-
provements to this task.

In-depth Analysis

We present further discussions on multimodal supervised
fine-tuning and multimodal reinforcement learning. More-
over, qualitative examples for molecular understanding and
editing are also provided.

Ablation study on molecular understanding. Inspired
by the indistinguishable performance difference in validity
rate between the multimodal model and LLM, we are cu-
rious whether multimodal input benefits molecular under-
standing in the reasoning model era. To address this, we
evaluate and compare their molecular understanding perfor-
mance, as shown in Table 3. BioMedGPT-R1-LM is fine-
tuned using the same strategy as BioMedGPT-R1, but only
molecular SMILES strings are fed into the reasoning lan-
guage model. The same instruction and answer templates
are employed. As seen in Table 3, multimodal input signif-
icantly improves performance on this task. The fine-tuned
BioMedGPT-R1-LM achieves similar performance to Mol-
Instructions (Fang et al. 2023) (as shown in Table 1), an in-
domain language model trained on a large-scale molecular
question-answering dataset. Although both BioMedGPT-R1
and BioMedGPT-R1-LM can model SMILES language, ad-
ditional multimodal input introduces molecular semantic in-
formation from other perspectives.

Performance on out-of-domain text-based medical rea-
soning. Recent work in vision multimodal reasoning has
observed that multimodal fine-tuning can simultaneously
improve text-based reasoning capabilities (Ji et al. 2024). To
explore whether biomedical multimodal fine-tuning exhibits
a similar phenomenon, we fine-tune BioMedGPT-R1 using
both the ChEBI-20 molecule description dataset (Edwards
et al. 2022b) and the USMLE medical QA dataset (Jin et al.
2021). We then evaluate the out-of-domain performance us-
ing the expert-level medical reasoning benchmark MedX-
pertQA (Zuo et al. 2025). The results are compared and re-
ported in Table 4. Text-based fine-tuning on the USMLE
dataset results in a performance improvement of 7.3%, while
BioMedGPT-R1 gains an additional 0.9% performance ad-
vantage through multimodal fine-tuning. Similar to the ob-
servation in the vision-language domain, biomedical multi-
modal fine-tuning may also enhance related text-based rea-
soning capabilities.

Learning curve of text-based RL and multimodal RL.
To further investigate the differences between text-based
reinforcement learning and multimodal RL, we report the
accuracy reward curve for the first 2500 training steps in
Figure 4. BioMedGPT-R1-LM achieves higher accuracy re-



Table 3: Ablation Study on Molecular Understanding. All metrics are in %.

Methods BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
BioMedGPT-R1-LM 22.2 11.5 35.1 16.4 29.1 28.2
BioMedGPT-R1 38.3 27.3 51.7 33.1 44.8 431
improvement +72.5 +137.4 +47.3 +101.8 +54.0 +52.8

Table 4: Performance on text-based medical reasoning.
All metrics are in %.

Methods Acc.  Abs. Improv.
DS-R1-Qwen-14B 11.9 -
BioMedGPT-R1-LM | 19.2 + 7.3
BioMedGPT-R1 20.1 +0.9

wards in the early stages (around 500 steps), as text-based
models are generally more adept at adhering to format re-
quirements. Once both models generate responses that meet
the format requirement (i.e., the predicted SMILES string is
enclosed within the <answer> tag), BloMedGPT-R1 usu-
ally gains higher rewards.

1.0

—— BioMedGPT-R1-LM (Smoothed)
BioMedGPT-R1 (Smoothed)

Accuracy Reward
{

0 500 1000 1500 2000 2500
Steps

Figure 4: Learning curve of BioMedGPT-R1 (multimodal
RL) and BioMedGPT-R1-LM (text-based RL).

Qualitative example on molecular understanding and
editing. BioMedGPT-R1 is trained using the three-stage
‘see-understand-edit® strategy. For intuitive analysis, we
provide two examples: (1) an example of molecular un-
derstanding after the cross-modal alignment learning stage
(Figure 5) and (2) an example of molecular editing after the
multi-modal reinforcement learning stage (Figure 6). The
model is capable of generating valid, improved molecules
with explicit explanations, thereby achieving explainable
molecular editing.

Conclusion

In this work, we introduce BioMedGPT-R1, a biomedical
multimodal reasoning model, and investigate its capabili-
ties in molecular understanding and editing. We propose a
three-stage training strategy that includes cross-modal align-
ment, multimodal supervised fine-tuning, and multimodal
reinforcement learning. To facilitate model evolution, we de-
sign an instruction template system, a reward system, and a

molecular editing dataset. The model is trained to first ‘see’
the molecule, then ‘understand’ it, and finally ‘edit’ it. Com-
prehensive experimental results demonstrate the effective-
ness of BioMedGPT-R1. We provide an in-depth analysis of
biomedical multimodal reasoning for the foundational tasks
of molecular understanding and editing, highlighting the po-
tential of multimodal reasoning to advance molecular scien-
tific discovery. Future work will explore more valuable yet
challenging practical applications.
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BioMedGPT-R1: Okay, so I'm trying to figure out what this molecule is and where it might be used in pharmaceuticals. Hmm, that looks a bit

complicated, but I can try to break it down.

First, I notice there are some rings involved. The "CICNC..." part suggests a cyclic structure, maybe a six-membered ring with some
substituents. The "[C@H]" and "[C@@H]" indicate stereochemistry, so this molecule has chiral centers. That's interesting because chirality is
important in pharmaceuticals since it can affect how a drug interacts with the body. Then there's the "C2=CC=C(C=C2)F" part, which looks
like a benzene ring with a fluorine substituent. Fluorine is a common substituent in drugs because it can make molecules more stable or
increase their lipophilicity, which is important for how drugs are absorbed in the body. The "COC3=CC4=C(C=C3)OCO4" part seems to have
an oxygen-containing ring, maybe an epoxide or something similar. Epoxides are reactive groups, so if this molecule has one, it might be
involved in some kind of biochemical reaction once inside the body. Putting it all together, this molecule seems to have a complex structure
with multiple rings, fluorine substituents, and stercochemistry. These features could make it a candidate for various pharmaceutical
applications. For example, the fluorine could help in making the molecule more resistant to metabolic breakdown, increasing its half-life in the
body. The rings might provide a scaffold for binding to specific receptors or enzymes, which is crucial for drug action.

I wonder if this molecule is part of a larger class of drugs. Maybe it's an antidepressant, antipsychotic, or something else. Fluorinated
compounds are used in several drugs, like some antidepressants where the fluorine helps in modifying the molecule's properties to enhance
efficacy or reduce side effects. The stereochemistry also plays a big role. Different enantiomers (mirror image forms) of a molecule can have
different effects in the body. So, if this molecule has specific stereochemistry, it might be designed to target certain receptors more effectively
or avoid binding to off-target sites, which is important for minimizing side effects. I'm also thinking about how this molecule might be

synthesized. -+

In terms of potential uses, this molecule could be a candidate for treating conditions where modulating certain biological pathways is beneficial.
For example, if it targets the serotonin or dopamine systems, it might be used in treating depression or schizophrenia. Alternatively, if it
interacts with other receptors, it could be useful in pain management or as an anti-inflammatory agent. I should also consider the
pharmacokinetics of this molecule. How is it absorbed, distributed, metabolized, and excreted? The fluorine and oxygen groups might
influence these processes. For instance, fluorine can increase the molecule's lipophilicity, aiding in absorption, while the oxygen-containing

rings might affect how the molecule is metabolized in the liver.

Figure 5: Qualitative example on molecular understanding.
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BioMedGPT-R1: Alright, so I'm trying to figure out how to generate a new molecule that can bind with DNA-PK, starting from the given
molecule. First, I need to understand what DNA-PK is. DNA-PK stands for DNA-dependent protein kinase. It's an enzyme involved in DNA
repair, particularly in the non-homologous end joining (NHEJ) pathway. -+ I should think about the structural features that are known to
interact with DNA-PK. From what I remember, DNA-PK has a catalytic subunit (PRKDC) which is a serine/threonine kinase. Inhibitors often
target the ATP-binding pocket or other critical regions involved in kinase activity. Looking at the original molecule, it seems to have a bicyclic
structure with a fluorine and hydroxyl group attached. There's also a piperazine ring. -« To create a new molecule, I should consider
modifying parts of the structure that could affect its binding to DNA-PK. One approach is to alter the substituents on the aromatic rings.
Fluorine is an electron-withdrawing group, and replacing it with something else might change the electronic environment, potentially affecting
binding. Alternatively, I could add or remove groups that might influence the molecule's ability to fit into the binding site. For example, adding
a methyl group might increase steric hindrance, or adding a hydroxyl group could introduce a new hydrogen bonding site. Another thought is to
modify the piperazine ring. Changing the substituents on the nitrogen atoms or altering the ring's size could affect the molecule's conformation
and its interaction with DNA-PK. I should also consider the molecule's solubility and pharmacokinetics, but since the focus is on binding, I'll
prioritize structural changes that might enhance or alter binding affinity.

Let me think about specific modifications. If I replace the fluorine with a chlorine, that would change the substituent from F to Cl. Chlorine is
also an electron-withdrawing group but has a different size and polarizability. Alternatively, I could replace the fluorine with a hydrogen,
making that position less electronegative. Another option is to add a methoxy group (-OCH3) where the fluorine is. Methoxy is an electron-
donating group, which could alter the electronic nature of the aromatic ring, potentially affecting binding. I should also consider the possibility
of adding a substituent that could act as a hydrogen bond donor or acceptor. For instance, adding an -NH2 group might provide a new site for
hydrogen bonding with DNA-PK. However, I need to ensure that the modification doesn't disrupt the overall structure necessary for binding.
It's a balance between altering the molecule enough to change its binding properties and keeping it structurally similar to maintain some level of
activity. Perhaps another approach is to change the substitution pattern on the aromatic ring. If the fluorine is in a certain position, maybe
moving it or adding another substituent in a different position could create a better fit in the binding site. I also need to think about the
molecule's flexibility. Changing substituents can affect how the molecule folds or moves, which in turn affects how it interacts with the target
enzyme. In summary, my plan is to identify a substituent on the original molecule that can be altered to create a new molecule with potential
DNA-PK binding activity. I'll choose a modification that changes the electronic environment or introduces a new functional group that could

interact with DNA-PK's active site.

<answer>Nclnenc2cle(-clece(Cle(0)cel)nn2CC1CCNCC1</answer>

Step-by-Step Explanation:
1.

Original Structure Analysis: The original molecule contains a fluorine substituent on an aromatic ring. Fluorine is highly electronegative
and can influence the molecule's electronic properties and binding interactions.

2. Modification Strategy: To alter the molecule's binding potential with DNA-PK, I decided to replace the fluorine atom with chlorine.
Chlorine is also electronegative but has a larger atomic size and different polarizability compared to fluorine.

3. Impact of Change: This substitution aims to modify the electronic environment of the aromatic ring, potentially affecting how the
molecule interacts with the ATP-binding pocket of DNA-PK. The change could influence hydrogen bonding or other interactions crucial

for binding.

4. Resulting SMILES: The new molecule's SMILES string reflects the substitution of F with Cl, yielding ‘Nclnenc2c¢le(-clece(Cl)e(O)cl)

nn2CCICCNCCI".

This modification creates a structurally similar yet distinct molecule that may exhibit different binding affinities towards DNA-PK.

Figure 6: Qualitative example on molecular editing.
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