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Abstract— Effective BEV object detection on infrastructure
can greatly improve traffic scenes understanding and vehicle-to-
infrastructure (V2I) cooperative perception. However, cameras
installed on infrastructure have various postures, and previous
BEV detection methods rely on accurate calibration, which is
difficult for practical applications due to inevitable natural
factors (e.g., wind and snow). In this paper, we propose a
Calibration-free BEV Representation (CBR) network, which
achieves 3D detection based on BEV representation without cal-
ibration parameters and additional depth supervision. Specif-
ically, we utilize two multi-layer perceptrons for decoupling
the features from perspective view to front view and bird-
eye view under boxes-induced foreground supervision. Then,
a cross-view feature fusion module matches features from
orthogonal views according to similarity and conducts BEV
feature enhancement with front view features. Experimental re-
sults on DAIR-V2X demonstrate that CBR achieves acceptable
performance without any camera parameters and is naturally
not affected by calibration noises. We hope CBR can serve as
a baseline for future research addressing practical challenges
of infrastructure perception.

I. INTRODUCTION

3D object detection is one of the key enabling technologies
for environment perception. Compared with LiDAR-based
methods, vision-based methods are cost-effective and easy
to implement. However, it is an ill-posed problem to recover
3D information from 2D image. Existing methods can be
grouped into three categories according to when the 2D
information is lifted to 3D, including data lifting-based meth-
ods, feature lifting-based methods, and result lifting-based
methods [1]. Most of them are not designed specifically for
infrastructure side. Different from typical applications, such
as vehicle-side environment perception, object detection on
infrastructure side has two main challenges: 1) computing
resource is limited, 2) cameras are installed in various
postures (Figure 1.a), and accurate calibration parameters
are hard to obtain or dynamically correct due to natural
factors, like wind and snow.

Among the aforementioned categories, 2D images are
directly transformed into pseudo 3D data (e.g., point cloud)
and processed via LiDAR-based pipeline in data lifting-based
methods [2], [3], [4], which are computational expensive
for infrastructure. Result lifting-based methods [5], [6], [7],
[8], [9] recover 3D information, including 3D locations and
dimensions, based on 2D perspective view features and fully
leverage the advantages of 2D detection pipelines. Although
they can basically address the aforementioned challenges, the
features in perspective view hinder the further development
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(a) The distribution of pitch angles in DAIR-V2X dataset.

(b) Calibration-based and calibration-free BEV methods.

Fig. 1. Cameras are installed in various postures, especially various pitch
angles, on infrastructures (data is from DAIR-V2X dataset [18]). Compared
with previous calibration-based methods, our approach is calibration-free,
which is naturally not constrained by calibration accuracy.

of V2I cooperative perception researches, which only enables
result-level fusion. Considering feature-level fusion, feature
lifting-based methods [10], [11], [12], [13], [14], [15] first
transform 2D image feature into 3D voxel feature and
collapse them to generate BEV features. BEV features from
different agents, time series, and modalities can be fused in
a physics-interpretable manner [16], and 3D detection based
on BEV representations has attracted immense attention
in recent years. However, these methods rely on accurate
camera calibration (i.e. intrinsic and extrinsic parameters)
and/or additional depth supervision to assist cross-view fea-
ture projection, which are not suitable for infrastructure-
side perception because of unavoidable calibration noise, and
their performance would be significantly degraded if using
noisy parameters. PYVA [17] generated BEV representations
via multi-layer perceptrons (MLPs) without camera param-
eters for road scene layout estimation on vehicle-side, but
the performance is far from satisfaction when migrated to
detection task on infrastructure side.

To address the practical challenges of infrastructure-side
perception, we propose a Calibration-free BEV Represen-
tation (CBR) network, which is naturally not constrained
by calibration accuracy (Figure 1.b). Specifically, we utilize
light image backbone ResNet-18 to extract perspective view
feature. In the face of various camera postures, two MLPs
are used for view decoupling from perspective view to front
and bird-eye view. The view transformation is supervised
by boxes-induced foreground segmentation labels generated
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from 3D bounding box labels, without additional labeling
cost. To compensate information loss of BEV features along
height dimension (z-axis), a cross-view feature fusion mod-
ule is proposed for BEV feature enhancement using front
view features. Assuming that same object should have similar
features under different views, features from orthogonal
views are fused according to similarity distribution.

Our contributions are summarized as follows:
• We point out the practical challenges of infrastructure-

side perception, and propose the Calibration-free BEV
Representation network, CBR, to address various install
postures and calibration noise.

• The perspective view features are decoupled to front
view and bird-eye view via MLPs without any cal-
ibration parameters, and orthogonal feature fusion is
similarity-based without additional depth supervision.

• Experimental results demonstrate that CBR achieves ac-
ceptable detection performance based on BEV represen-
tation on large-scale real-world dataset DAIR-V2X and
can output BEV foreground segmentation predictions at
the meantime.

II. RELATED WORK

In this section, we briefly review two related topics, BEV
object detection and BEV representation generation.

A. Image-based BEV Object Detection

BEV object detection methods have attracted more at-
tention recently, and have made great progress in perfor-
mance. However, most of them are designed for typical
vehicle-side perception and not suitable for infrastructure
side. Depth-based methods [10], [11], [19] infer depth to
recover 3D information along y-axis of BEV coordinate
system, but the depth in image view on infrastructure is
the compound information along y-axis and z-axis due
to the pitch angle, which cannot be directly utilized for
BEV detection. Projection-based methods [14], [20] are not
affected by camera postures, since the features are projected
to 3D according to calibration parameters before fed into
detection heads, nevertheless, their performance highly relies
on calibration accuracy. Transformer-based methods [21],
[13], [12], [22] achieve better performance with higher
computational cost, and calibration parameters may also
be needed for attention guidance. To address the practical
challenges of infrastructure-side perception and get rid of
the dependence on calibration accuracy, we propose CBR to
achieve 3D perception in a calibration-free manner.

B. BEV Representation Generation

With the advantage of succinct and physics-interpretable,
BEV representations are deployed in more and more down-
stream real-world applications, especially for traffic scenes.
Despite the aforementioned approaches adopted in detection
tasks, how to generate BEV representation from image is
also well-studied in segmentation researches, consisting of
geometry-based (homograph or depth) and learning-based
(MLP or transformer) approaches [16]. Homograph-based

methods [23] realize view projection relying on physical
mapping under horizontal plane constraint. Depth-based
methods [20], [19], [24], [11], [10] explicitly leverage depth
distribution to lift 2D features to 3D space (e.g. voxel and
points cloud), and depth supervision is an essential cue to
them. Learning-based approaches ignore the geometric priors
from calibrations. MLP-based methods [25], [26], [17] model
the transformation via the global mapping capability of MLP.
On account of strong modeling ability, transformer-based
methods [13], [12], [22] are further developed recently. It
would be a considerable option for devices with sufficient
computing resources. In this paper, MLP is used for view
decoupling, and similarity-based cross-view fusion is pro-
posed taking inspiration from depth-based methods.

III. CBR FRAMEWORK

In this section, we describe the proposed calibration-
free BEV representation network, which mainly consists of
feature view decoupling module and similarity-based cross-
view fusion module.

A. Overall Architecture

Addressing practical challenges, CBR achieves feature
view standardization via decoupled feature reconstruction
(Figure 2). Images captured from infrastructure are fed into
an image backbone to extract perspective view features. With
the consideration of limited computing resources, ResNet-
18 is employed. The feature maps are further processed by
a convolution operation with a filter in the size of 3 × 3
and a mean pooling operation to save the computational cost
of the view decoupling. Image scale is gradually decreased
from H×W to H

64 ×
W
64 , while the channel size is increased

to 1024. Taking the advantage of global receptive field, the
perspective view feature fpv is spatially decoupled to two
orthogonal views via FVD (feature view decoupling) module.
Next, a SCF (similarity-based cross-view fusion) module is
used to match the features from different views and generate
enhanced BEV features fe leveraging front view features
ffv and bird-eye view features fbev . Finally, fe is fed to 4
detection heads for classification and regression tasks. Each
detection head is composed of a basic convolution block,
including convolution, batch normalization, and RELU.

B. Feature View Decoupling

In real-world scenes, cameras installed on infrastructure
side usually have various postures, including x-y-z location
and pitch-yaw-roll orientation. Compared with location, ori-
entation, especially pitch, will directly affect the perspective
view features. To generate unified representations despite of
various orientation, we propose the FVD module for feature
view decoupling. Since the features of different views are
not spatially aligned, MLP can better facilitate the view
decoupling compared with convolution operation. The MLP
structure consisted of two fully connected layers is deployed
following the practice of previous works [27], [17]. The
decoupled features are fed to four consecutive decoder layers,
and we utilize nearest interpolation for upsampling from



Fig. 2. Framework of the Calibration-free BEV Representation (CBR) network.

H
64 ×

W
64 to H

4 ×
W
4 . After that, the front view features ffv

and BEV features fbev are obtained:

ffv = Φfv(MLP(fpv)) (1)

fbev = Φbev(MLP(fpv)) (2)

where ‘Φ(·)’ denotes the feature decoding operation, and fpv
is the extracted features in perspective view.

To guide the view decoupling without using calibration pa-
rameters, ffv and fbev are further input to the corresponding
foreground segmentation heads (composed of a basic convo-
lution block), respectively. The segmentation prediction is
under the boxes-induced foreground supervision, which is
generated by projecting the 3D bounding boxes to front/bird-
eye view, without additional labeling cost. The benefits of the
foreground segmentation supervision are two-fold. On the
one hand, the pixel-level supervision can effectively guide
the view transformation and encourage the module focus
on foreground objects (e.g., cars). On the other hand, the
BEV foreground segmentation predictions are output as by-
product, which indicates the dynamic foreground layout of
the traffic scenes.

C. Similarity-based Cross-view Fusion

BEV features can effectively represent the foreground
layout in bird-eye view. However, 3D detection performance
based on that will naturally be influenced by the information
loss along z-axis, especially when the view projection is not
accurately guided with calibration parameters. Therefore, it is
necessary to enhance the BEV representations with features
in the front view, and the main difficulty is matching the
corresponding features across orthogonal views.

There are two heuristic options, as shown in Figure 3.
Assuming that the feature of the same object in different
views should be similar, SGF (similarity-based global fusion)
can match features globally according to similarity, but it is
computational expensive. To reduce the searching space of
feature matching between two views, CPF (condense-push
fusion) first condenses ffv along z-axis and then pushes the
obtained fc along y-axis making use of geometric constrains.

(a) Condense-Push fusion (CPF).

(b) Similarity-based global fusion (SGF).

Fig. 3. Illustration of condense-push fusion (CPF) and similarity-based
global fusion (SGF).

To embrace the advantages of both CPF and SGF, we
design SCF (similarity-based cross-view fusion) module,
which matches the features based on similarity with the
geometric constrains (Figure 2). Specifically, we only take
the similarity among the features with the same x-axis value
into consideration. To reduce computational cost, we utilize
the condensed feature fc = Avg(ffv) for feature fusion,
where ‘Avg(·)’ denotes mean pooling operation along z-axis.
The similarity sij is measured by the inner-product:

sij = 〈fci , fbevij 〉 (3)

where ‘〈·, ·〉’ denotes inner-product operation, and i is the
index of x-axis, j is the index along y-axis. The calculated
similarity is used as fusion weights to enhance BEV feature
fbev with condensed front view feature fc:

fe = Conv(Concat(fbev, s · fc)) (4)

where ‘Conv(·)’ and ‘Concat(·)’ denote convolution and
concatenation operations.

It can be presumed that the feature similarity distribution
across orthogonal views along y-axis is implicit depth dis-
tribution, since the closer to the real depth, the more similar
the features across views are. SCF bridges the cross-view
features without additional depth supervision. Moreover,
the similarity-based fusion indirectly facilitates the spatial-
wise alignment across different views, as the corresponding
features are encouraged to be in the same x column.



Fig. 4. Visualization examples. Red: groundtruth. Green: predictions of CBR. Blue line indicates the head of vehicle.

TABLE I
QUANTITATIVE EVALUATION ON DAIR-V2X DATASET WITH CALIBRATION NOISE ON ROTATION ANGLES. THE PERFORMANCE IS SIGNIFICANTLY

DEGRADED WITH NOISY CALIBRATION PARAMETERS, WHILE OUR APPROACH IS NOT INFLUENCED. ALL SCORES ARE IN %.

Methods Calib. Noise (deg) AP3D|R40 (IoU=0.5) AP3D|R40 (IoU=0.7) APBEV |R40 (IoU=0.5) APBEV |R40 (IoU=0.7)
easy mod. hard easy mod. hard easy mod. hard easy mod. hard

ImVoxelNet [14]

/ 47.6 29.2 27.1 27.1 16.2 14.8 51.9 32.7 30.4 35.4 20.5 20.1
0.1 44.5 26.5 26.2 24.2 13.9 12.5 50.9 32.0 29.9 32.1 19.0 17.5
0.2 38.6 23.1 22.6 21.0 11.5 11.2 45.1 26.8 26.4 27.6 16.4 15.0
0.5 29.3 16.9 15.4 12.9 6.8 6.5 35.0 20.1 19.7 19.1 10.9 9.9
1.0 19.7 11.4 10.2 5.0 2.4 2.4 25.5 14.7 14.3 9.6 5.3 4.7
2.0 8.2 4.4 4.3 1.0 0.5 0.5 13.6 7.2 7.0 2.2 1.0 1.0
5.0 0.6 0.3 0.3 0.0 0.0 0.0 1.4 0.7 0.7 0.1 0.1 0.1

PYVA-det calibration-free 12.6 7.3 7.1 0.9 0.6 0.5 23.3 14.0 13.6 5.5 2.9 2.9
CBR (Ours) calibration-free 24.7 15.7 14.7 1.3 0.8 0.8 40.0 24.9 24.5 4.9 3.2 3.2

IV. EXPERIMENTS

This section describes experiments on real-world infras-
tructure detection dataset. We compare our model with other
typical BEV detection methods in noisy calibration set-
ting, and provide detailed ablation study and error analysis.
Further evaluation on BEV foreground segmentation also
validates the scene layout understanding capacity of CBR.

A. Experimental Setting
Datasets We evaluate the proposed CBR model on the

large-scale real-world cooperative perception dataset DAIR-
V2X [18]. It provides 12,424 images captured from di-
verse infrastructure-side cameras with 3D annotations, which
comprises 8800 images for training and 3624 images for
validation. We follow the official split scheme and report
experimental results on validation set. All of the objects
inside the camera view are labeled, and the perception range
of our method is set as 90m× 90m× 5m. The input images
are resized to a fixed size of 1024× 1024.

Foreground Segmentation Label Generation To gen-
erate foreground segmentation labels in orthogonal views,
each bounding box of labeled objects in perception range is
projected to bird-eye and front view. The generated pixel-
level groundtruth is with the size of 256× 256.

Calibration Noise To simulate the natural calibration
noise in practical environments, we introduce several levels
of Gaussian noise to rotation angles

θn = xn ∗ nrange (5)

where xn ∼ N(µ, σ2), µ = 0, σ = 1
3 , and nrange ∈

{0.1, 0.2, 0.5, 1.0, 2.0, 5.0} denotes the noise level in degree.

Baselines We compare CBR with both calibration-based
and calibration-free BEV methods. ImVoxelNet [14] is a
typical projection-based detection method, which projects
features from perspective view to BEV with the guidance of
calibration parameters. PYVA [17] is originally proposed for
calibration-free segmentation. We develop PYVA-det based
on that by adopting additional detection heads.

Implementation Details The image backbone, ResNet 18,
is initialized with pre-trained weights provided by PyTorch.
The initial learning rate is set to 2 × 10−4. We use adam
optimizer for training with batch size of 6, and the network is
trained until convergence (200 epochs). Random flipping and
random color jitter are applied while training. Experiments
are implemented in PyTorch on a server with NVIDIA A30.

B. Main Results

Table I reports the comparison results between CBR and
baselines with calibration noise. The performance with the
IoU threshold of 0.5 is regarded as major concern. CBR
achieves 15.7% and 24.9% mAP on 3D detection and BEV
detection tasks for moderate difficulty. Some visualization
examples are shown in Figure 4.

It can be seen that ImVoxelNet [14] performs better
leveraging accurate calibration parameters. However, the
performance is significantly degraded while noise raises,
almost cut in half if small rotation noise (within 0.5 degree)
is introduced randomly. Different from that, calibration-
free methods are naturally not affected by noisy calibration
parameters, and show the superiority in noisy cases, visually
shown in Figure 5. Our CBR has performance advantage



Fig. 5. Comparison between calibration-based method [14] (solid line)
and our CBR (dotted line) with calibration noise under moderate difficulty.
CBR is naturally not affected by noisy rotation angles.

on BEV detection, when nrange is greater than 0.2 degree.
The watershed on 3D detection task is 0.5 degree. We also
report experimental results with a more strict IoU threshold,
IoU = 0.7, and performance trend in noisy case is in
line with that of IoU = 0.5. Since calibration noise on
infrastructure side is unavoidable due to the complex natural
factors (e.g. wind and snow), calibration-free methods are
more robust under various scenes.

Although PYVA-det is not limited by calibration accuracy
either, the performances on 3D/BEV tasks are far from sat-
isfaction. Our approach achieves better accuracy-robustness
balance for infrastructure perception.

C. Ablation Study

We conduct the following experiments to study the im-
pact of different cross-view feature fusion methods. The
performance comparisons are summarized in Table II, and
the baseline is vanilla BEV representation, which is di-
rectly obtained via feature view decoupling without cross-
view feature fusion. Benefiting from similarity-based fusion,
SGF effectively leads to an improvement of 0.9% on BEV
detection, but the performance growth on 3D detection is
limited. CPF performs better than SGF leveraging the front
view features with geometric constrains, and the performance
on 3D task is lifted to 13.6%. Embracing advantages of
geometry and similarity, SCF further boosts the performances
on both tasks, and achieves 15.7% and 24.9% respectively.
The performance advantage of SCF is obvious compared
with SGF and CPF.

TABLE II
ABLATION STUDY ON CROSS-VIEW FEATURE FUSION.

Ablated AP3D|R40 (IoU 0.5) APBEV |R40 (IoU 0.5)
easy mod. hard easy mod. hard

Vanilla-BEV 20.2 12.6 11.7 36.8 22.2 20.7
SGF 21.8 13.0 12.8 37.3 23.1 22.7
CPF 21.8 13.6 13.3 38.9 23.5 23.1
SCF 24.7 15.7 14.7 40.0 24.9 24.5

Fig. 6. Error analysis: evaluation with distance.

D. Error Analysis

To better understand CBR, we further conduct several
groups of experiments for error analysis, and the limitations
of calibration-free BEV representation are discussed.

Evaluation with distance. The following experiments
are conducted to analysis the performance under different
perception range (Figure 6). The infrastructure-side percep-
tion region is split to four parts with three thresholds of
30m, 60m, and 90m. It can be seen that the performance
degradation is inevitable along with distance increasement.
The performance is almost doubled if we only take the
objects within the range of 60m into consideration. Note
that the performance within 60m is slightly better than that
within 30m. We think this increment is caused by the amount
of information of vehicles in different views. Specifically, the
object within 30m captured from infrastructure is almost in a
top view, while it tends to be in side view when extended to
60m. Intuitively, the side view is more informative than top
view. In addition, the decline is obvious out of the range of
90m, which is the designed representation range of our BEV
feature. Therefore, detection capability is limited by the the
manually set perception range, and the objects lie out of that
are theoretically ignored.

Error sources of 3D detection. Compared with BEV
detection, performance on 3D detection is worse since the
additional prediction along z-axis, including location-z and
height. To analysis the major source of error, we evaluated
the ablated predictions by ignoring either location-z or height
predictions. As shown in Figure 7, the score increment is
more obvious if ignoring predictions of location-z rather
than height predictions, regardless of the IoU threshold (0.5
or 0.7), which indicates location-z prediction is the major
error source on 3D detection. It is difficult to estimate the
location along z axis for infrastructure perception due to the
various installation height of cameras, especially without the
reference of calibration parameters.

E. Evaluation on BEV Foreground Segmentation

We further evaluate CBR on BEV foreground segmen-
tation, which is a by-product of feature view decoupling
(Table III). The performance of PYVA [17] is declined when



(a) 3D detection performance (IoU 0.5).

(b) 3D detection performance (IoU 0.7).

Fig. 7. Error analysis: major error source of 3D detection.

additional detection heads are introduced. Although CBR is
slightly worse than PYVA, it is still better than PYVA-det.

TABLE III
QUANTITATIVE EVALUATION ON BEV FOREGROUND SEGMENTATION.

Methods mIoU (%) mAP (%)
PYVA [17] 42.3 56.0
PYVA-det 33.9 43.5

CBR (Ours) 40.3 50.4

V. CONCLUSION

Addressing the practical challenges of various installation
postures and calibration noises, we point out the significant
performance degradation of calibration-based BEV detection
approach under calibration noise, and propose a calibration-
free BEV representation for infrastructure perception in this
paper. The extracted image features are decoupled to two
orthogonal views, and BEV representations are enhanced via
similarity-based cross-view fusion. Extensive experiments on
real-world dataset demonstrate that CBR achieves a better
accuracy-robustness balance. In addition, error analysis are
reported, and limitations of the proposed calibration-free
BEV representations are further discussed. In future work,
the way to utilize partial stable calibration parameters to
improve perception performance deserves to be studied, and
how to leverage multi-view images for adaptive camera re-
calibration is also worth to be further explored.

APPENDIX: MORE EXPERIMENTAL RESULTS

CBR is proposed for practical infrastructure perception to
facilitate the development of V2I cooperative perception. The
experiments in Sec.IV are conducted on DAIR-V2X-C to
provide an infrastructure-side baseline for VIC3D task, and
we further report more experimental results on DAIR-V2X-I
to make comparison with more recent approaches.

Datasets Different from the main dataset DAIR-V2X-
C for V2I cooperative perception, DAIR-V2X-I only con-
tains infrastructure-side data. It includes around 10 thousand
frames and is divided into train/val/test (50/20/30) subsets.
We evaluate CBR on validation set following [28].

Baselines We compare our CBR with other SOTA camera-
based methods like ImVoxelNet [14], BEVFormer [12],
BEVDepth [11], and BEVHeight [28]. In addition, some
LiDAR-based and multimodal-based methods are also re-
ported for reference, including PointPillars [29], SECOND
[30], and MVXNet [31].

Experimental results on DAIR-V2X-I We report both 3D
and BEV perception performance under two IoU threshold
in Table IV. CBR achieves 60.1% AP3D|R40 and 64.5%
APBEV |R40 for moderate difficulty, which demonstrates the
effectiveness of our method in practical application. Besides,
it also achieves 57.9% mIoU and 60.2% mAP on BEV
foreground segmentation. Some visualization examples are
shown in Figure 8.

TABLE IV
EXPERIMENTAL RESULTS ON DAIR-V2X-I.

Task IoU=0.5 IoU=0.7
easy mod. hard easy mod. hard

AP3D|R40 72.0 60.1 60.1 38.5 31.6 31.7
APBEV |R40 78.7 64.5 64.6 56.5 46.1 46.2

Comparison on DAIR-V2X-I benchmark We compare
CBR with recent methods on the original benchmark, as
shown in Table V. The experimental results of others are
from [28], and all of them are calibration-based. It can
be seen that CBR outperforms five of them without the
limitation of accurate extrinsic parameters.

TABLE V
COMPARISON ON DAIR-V2X-I BENCHMARK. THE RESULTS OF OTHERS

ARE FROM [28]. ‘L’ AND ‘C’ DENOTE LIDAR AND CAMERA.

Method Modality AP3D|R40 (IoU=0.5)
easy mod. hard

PointPillars [29] L 63.1 54.0 54.0
SECOND [30] L 71.5 54.0 54.0
MVXNet [31] LC 71.0 53.7 53.8

ImVoxelNet [14] C 44.8 37.6 37.6
BEVFormer [12] C 61.4 50.7 50.7
BEVDepth [11] C 75.5 63.6 63.7
BEVHeight [28] C 77.8 65.8 65.9

CBR (Ours) C 72.0 60.1 60.1



Fig. 8. Visualization examples on DAIR-V2X-I. Red: groundtruth. Green: predictions of CBR. Blue line indicates the head of vehicle.
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