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FII-CenterNet: An Anchor-free Detector with
Foreground Attention for Traffic Object Detection

Siqi Fan, Fenghua Zhu, Shichao Chen, Hui Zhang, Bin Tian, Yisheng Lv and Fei-Yue Wang

Abstract—Most successful object detectors are anchor-based,
which is difficult to adapt to the diversity of traffic objects. In
this paper, we propose a novel anchor-free method, called FII-
CenterNet, which introduces the foreground information to elim-
inate the interference of the complex background information in
traffic scenes. The foreground region proposal network segments
the foreground based on boxes-induced segmentation annotation,
and midground is proposed to provide rich edge information of
the objects. In addition to foreground location, scale informa-
tion is also introduced to improve the regression performance.
Extensive experimental results on two public datasets verify the
benefits of the introduction of the foreground information, and
demonstrate that our FII-CenterNet achieves the state-of-the-art
performance in both accuracy and efficiency.

Index Terms—Object detection, Anchor-free detector, Fore-
ground region proposal

I. INTRODUCTION

INTELLIGENT transportation systems (ITS) are envisioned
to bring great benefits to the development of smart cities

and human societies. Object detection can locate traffic objects
timely and accurately, and plays an increasingly important role
in various ITS applications, such as autonomous driving. How-
ever, traffic object detection is also a challenging computer
vision problem, which attracts the interests and efforts from
both academia and industry.

The performance of object detection has been significantly
improved in the past few years, with the successful application
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Fig. 1. Diagram of FII-CenterNet. Our method proposes the foreground region
of traffic scenes based on semantic segmentation, and introduces foreground
information to traffic object detection.

of deep convolutional neural networks (ConvNets) [1]. Most
of the methods are anchor-based and can be divided into
two categories, which are single-stage methods and two-stage
methods respectively. Single-stage methods, such as SSD [2]
and YOLO [3], complete the classification and regression of
objects in one stage, and its advantage is that the detection
speed is very fast. Two-stage methods, such as Fast R-CNN
[4] and Faster R-CNN [5], can usually obtain more accurate
detection results by introducing the region proposal network.
Great efforts have been devoted to improve the accuracy
and efficiency of anchor-based methods, and they are ad-
vancing toward maturity. However, these methods have some
congenital deficiencies, which limit their popularity. Their
detection performance relies heavily on the hyperparameters
of the anchors, such as the size, aspect ratio and the numbers
of anchors. As there is still no efficient method to adjust
these hyperparameters autonomously, they have to be manually
calibrated case by case.

To address this problem, anchor-free methods are put for-
ward to improve the flexibility of the detectors [6] [7] and
have been widely concerned. Anchor-free methods do not
depend on preset anchors and can adapt to the diverse traffic
objects through regression. However, their detection accuracy
is ordinary, especially for the complex traffic scenes. The per-
formance of traffic object detection can be further improved by
eliminating the interference caused by the background infor-
mation. In the anchor-based methods, the detection accuracy
of the two-stage methods is better than that of the single-stage,
which is largely due to the region proposal network (RPN).
RPN distinguishes the foreground from the background. It
can help to eliminate the interference of complex background
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information, and focus more on the features that are really
useful for detection.

Inspired by the RPN in the anchor-based methods, we
propose a novel anchor-free method by introducing foreground
information to CenterNet, called Foreground Information
Introduction CenterNet (FII-CenterNet), which can achieve
better detection accuracy with high efficiency. The diagram of
our method is shown in Figure 1.

In sum, the main contribution of this paper are listed as
follows:

• A foreground region proposal method based on semantic
segmentation is proposed for anchor-free detectors.

• Midground is introduced as the transition region between
foreground and background, which can provide rich edge
information of the objects.

• Foreground scale information is introduced to regression
process, which can improve the scale prediction perfor-
mance of traffic objects.

• Our method is evaluated on two public datasets, KITTI
and PASCAL VOC. Extensive experimental results
demonstrate that FII-CenterNet effectively improves the
traffic object detection performance and achieves the
state-of-the-art performance in both accuracy and effi-
ciency.

II. RELATED WORK

Object detection has attracted wide attention for a long time,
and great achievements and breakthroughs have been made
in this field. Early object detection methods are based on
hand-crafted features and classifiers, which is time-consuming.
The representation abilities of hand-crafted features are very
limited. CNN-based object detection methods can effectively
extract features from images and perform end-to-end training.
The existing CNN-based methods can be divided into two
main categories according to whether they use anchor infor-
mation, i.e., anchor-based detectors and anchor-free detectors.

A. Anchor-Based Detectors

These detectors are based on the preset anchor informa-
tion, which can be further divided into two subcategories,
i.e., single-stage detectors and two-stage detectors. The two-
stage detectors have intermediate region proposal process,
also known as region-based detectors. In contrast, single-stage
detectors are also called region-free detectors.

1) Single-stage Detectors: These detectors [2] [3] [8] [9]
[10] process classification and regression in one stage, which
are efficient. SSD [2] and YOLO [3] are two typical single-
stage detectors and they enable real-time object detection.
YOLO V3 [8] utilizes feature pyramid network (FPN) and
uses anchors with different sizes or aspect ratios to adapt
various objects. DSSD [9] introduces additional large-scale
context into object detection to improve the detection accuracy
on small objects. Following, numerous researches have been
carried out to optimize the detection accuracy by improving
feature extraction networks and/or loss functions. Among
them, RetinaNet [10] is one representative work, which uses

FocalLoss to improve the imbalance of positive and negative
samples in the image.

Although the detection speed of single-stage detectors is
fast, the accuracy is average, while our FII-CenterNet performs
well and maintains high detection efficiency.

2) Two-stage Detectors: These detectors [11] [4] [5] are
usually composed of region proposal generation part and
detection part. R-CNN [11] performs region proposal through
selective search. Fast-RCNN [4] effectively improves compu-
tational efficiency by extracting features from the full image
and crops features instead. Faster R-CNN [5] merges RPN
with Fast-RCNN into a unified detection network by sharing
feature maps. RPN is proposed to generate high-quality region
proposals, which samples fixed-shape anchors and classifies
each into foreground or background.

The region proposal process effectively distinguishes the
foreground and background regions, and eliminates the inter-
ference of complex background information. However, it also
increases the computational complexity of detection.

The main deficiency of anchor-based detectors is that the
anchors must be set manually. Usually, the tuning processes
of these anchors are time-consuming and difficult, which limits
the usability of these methods, especially for complex traffic
scenes with diverse objects.

B. Anchor-Free Detectors

These detectors do not depend on the pre-set anchors by
using keypoints estimation for object detection, which can be
roughly divided into two subcategories according to the num-
ber of keypoints, i.e., methods based on the joint expression
of multiple keypoints and methods based on a single center
point per object.

1) Object Detection by Multiple Keypoints Estimation:
These methods [7] [12] [13] [14] [15] are based on the joint
expression of multiple keypoints. CornerNet [7] detects two
bounding box corners as keypoints, which is sensitive to the
edges and causes false detection. To improve the accuracy,
Keypoint Triplets for Object Detection [13] introduces ge-
ometric constraints. It detects two corners and the center
points, and then verifies whether there is a center point in
the center area determined by the corners. ExtremeNet [14]
decomposes corner detection into detecting the four-sided
extreme points of the bounding box. The detection result is
expressed in a more accurate way, instead of the rectangle
bounding box. RepPoints [15] uses 9 keypoints to get a more
detailed description, and uses weak supervision to locate them.

Generally, object detection by multiple keypoints estimation
can effectively improve the accuracy. However, they require a
combinatorial grouping stage after keypoint detection, which
significantly slows down the detection speed. Introducing
foreground information can improve the detection accuracy
with less time-consuming increment.

2) Object Detection by Center Point Estimation: These
methods [16] [6] [17] [18] simply extract a single center point
per object without the need for grouping or post-processing.
DenseBox [16] uses FCN (Fully Convolution Network) for
prediction. It estimates the probability of a pixel as a center
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Fig. 2. FII-CenterNet: introducing foreground information to CenterNet for traffic object detection. The numbers in the boxes represent the stride to the
image. We use modified DLA-34 in CenterNet to extract features. It uses deformable convolution to change the channels and uses transposed convolution
to upsample the feature maps. We show deformable convolution as a blue dashed arrow and show these two steps together as an orange dashed arrow. The
black dashed arrow means propagation without backward propagation.

point, and estimates the relative displacement of the two
corners of the bounding box centered on it. CenterNet [6]
simplifies object detection into center point detection and scale
prediction. CSP [17] is similar to it, which generates center
point heatmap and scale prediction map based on the extracted
feature map. FCOS [18] is based on FPN, which performs
object detection on multi-scale feature maps. Besides, it also
proposes center-ness to assist training.

Object detection by center point estimation is composed
of center points detection and scale prediction, which can
effectively adapt to the traffic object with variable size. In
addition, it can meet the needs of detection efficiency in
traffic scenarios. However, the detection accuracy in complex
traffic scenes is ordinary. To deal with that, we introduce
foreground region proposal to eliminate the interference of
complex background information and improve the accuracy
of traffic object detection.

C. Detectors Exploiting Segmentation Information

Semantic segmentation is another important computer vision
task and is widely used in ITS, such as road detection [19].
Our foreground region proposal method is based on that. We
are not the first one to show segmentation information can
help object detection. Mask R-CNN [20] shows that multi-task
training can help to improve the object detection task. He et
al.[20] and Shrivastava et al. [21] trained the object detection
task with instance segmentation annotation. Our work only
uses bounding box annotation and does not consider extra an-
notation. Gidaris and Komodakis [22] concatenated semantic
segmentation features with detection features at the highest
level, while DES [23] uses activation instead of concatenation
and combines the two features at the lowest detection feature
map. However, we use semantic segmentation features to
get foreground region information. The location information
is used to generate foreground region feature map, and the
scale information is introduced to regression task. In addition,
their works are based on anchor-based detectors. Gidaris and
Komodakis [22] utilize Faster R-CNN and DES [23] is based
on SSD. Our work is on the basis of CenterNet, which is a
typical anchor-free detector.

III. FII-CENTERNET APPROACH

The proposed FII-CenterNet is an anchor-free detection
network. Built on CenterNet, a foreground region proposal
network is added to introduce the foreground information. The
structure of the FII-CenterNet is shown in Figure 2.

FII-CenterNet uses a modified DLA-34 in CenterNet to
extract features. Deep Layer Aggregation (DLA) [24] is an im-
age classification network with hierarchical skip connections.
The modified DLA-34 utilizes deformable convolution as
skip connection from lower layers to the output. Specifically,
the original convolution is replaced with 3 × 3 deformable
convolution [25] at every upsampling layer.

Foreground region proposal network aims to estimate the
foreground region. By introducing the foreground location
information, foreground feature maps are generated from the
feature maps extracted by DLA-34. Mathematically, let FM
be the feature map and FFM be the foreground feature map.

FFM = FM� F

where F is the foreground region proposal result, and � is the
element-wise multiplication.

For an input image of width W and height H, a center
point heatmap P ∈ [0, 1]

W
R ×H

R ×C is produced in classification
process, where R is the output stride and C is the object
categories in traffic object detection. Thus, the prediction
Pxyc = 1 corresponds to a detected center point. The ground
truth center point heatmap Gp ∈ [0, 1]

W
R ×H

R ×C is generated
using a Gaussian kernel Gpxyc = exp(− (x−ĉpx)

2+(y−ĉpy)
2

2σ2
ĉp

),
where ĉp = cp

R is the low-resolution equivalent point of the
ground truth center point cp ∈ R of class c, and σĉp is an
object size-adaptive standard deviation [7]. At inference time,
the top 100 peaks in the heatmap whose value is not less than
its 8-connected neighbors are kept as center points prediction.

A scale prediction map S ∈ RW
R ×H

R ×2 is produced in
regression process. For center point pk, the scale prediction
is Sk = (wk, hk), where wk and hk correspond to the width
and height of the object centered at pk.

The local offset O ∈ RW
R ×H

R ×2 is also predicted addition-
ally as that in CenterNet. All classes share the same offset
prediction which is to recover the discretization error caused
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Fig. 3. FII-CenterNet training diagram. The loss function can be divided into four parts. Lf is the loss for foreground region proposal network; Lp is the
loss for center points prediction network; Ls is the loss for scale prediction network; Lo is the loss for offset prediction network.

by the output stride. For center point pk, the offset prediction
is Ok = (δkx , δky ).

The final detection results are described as bounding box.
For the center point pk, the corresponding bounding box
is (xk1 , yk1 , xk2 , yk2), which is decoded with pk and Sk.
Specifically,

xk1 = pkx + δkx −
wk
2

yk1 = pky + δky −
hk
2

xk2 = pkx + δkx +
wk
2

yk2 = pky + δky +
hk
2

The following subsections are organized as follows. First
of all, we propose the foreground region proposal network in
section A. Secondly, we describe the way to train the network.
Loss function and foreground segmentation label generation
method are described in section B and C, respectively. Some
edge information of the objects are lost because of the box-
induced label. Thus, we propose the concept of midground in
section D. In section E, we introduce the scale information
to regression network to make full use of the foreground
information. Training diagram is shown in Figure 3.

A. Foreground Region Proposal Network

In order to propose foreground region based on semantic
segmentation, there are two feasible implementation methods,
foreground region proposal by up branch and foreground
region proposal by self branch.

1) Foreground Region Proposal by Up Branch: In this
method, foreground region proposal is on the basis of the
results of the encoder, as shown in the up branch in Figure
2. It performs an upsampling operation through an additional
branch and proposes the foreground region using the results
obtained by multiple consecutive convolutions. In the up
branch, deformable convolution is used to change the channels,
and transposed convolution is used to upsample the feature

map. The encoder-decoder structure is commonly used in
semantic segmentation networks.

Mathematically, let E be the encoded features, this method
computes foreground region proposal F as

F = F(D(E))

where D(E) is the intermediate result decoded from E using
deformable convolution and transposed convolution.

2) Foreground Region Proposal by Self Branch: This
method directly performs further convolution operations on
the basis of feature maps, as shown in self branch in Figure
2. It directly uses the extracted feature maps and does further
analysis and processing. The foreground region proposal is
obtained by multiple consecutive convolutions.

F = F(FM)

Theoretically, the above two methods are both feasible. The
final choice is depend on the detection performance, so the
two methods are integrated in the network. The results of self
branch and up branch are fused, and then three consecutive
convolutions are performed to propose the foreground region.
We will describe the fusion methods of the two branches and
the final choice later in section IV.B.

To obtain better proposals, the foreground region is esti-
mated under different categories first. The prediction Fxyc = 1
corresponds to a proposed foreground pixel. Then the pixel-
wise maximum value of the proposals under different cate-
gories is calculated to get the final foreground region proposal.

B. Loss Function

The loss function can be divided into four parts:
(a) Lf is the loss for foreground region proposal network;
(b) Lp is the loss for center points prediction network;
(c) Ls is the loss for scale prediction network;
(d) Lo is the loss for offset prediction network.
For Lf and Lp, a modified focal loss [7] is used.

Lf =
−1
N

∑
xyc


(1− Fxyc)αlog(Fxyc) Gfxyc

= 1

(1−Gfxyc
)β(Fxyc)

α

log(1− Fxyc) otherwise



5

Fig. 4. Schematic diagram of segmentation label generation: The segmentation labels are generated from the bounding box labels. The top right is the
generation of foreground labels. Midground is introduced to labels as shown in bottom right.

where Fxyc is foreground pixels proposal, Gfxyc
is the

groundtruth of that, α and β are the hyper-parameters, and
N is the normalization factor. We use α = 2 and β = 4
following Law and Deng [7], and N is the number of pixels
where Gfxyc

= 1.

Lp =
−1
N

∑
xyc


(1− Pxyc)αlog(Pxyc) Gpxyc

= 1

(1−Gpxyc)
β(Pxyc)

α

log(1− Pxyc) otherwise

where Pxyc is the prediction of center points, and Gpxyc
is the

groundtruth of that. We also set α = 2 and β = 4.
For Ls and Lo, an L1 loss is used.

Ls =
1

N

N∑
k=1

|Sk −Gsk |

where Sk is the scale prediction at center point pk, and Gsk
is the groundtruth of that.

Lo =
1

N

N∑
k=1

|Ok −Gok |

where Ok is the offset prediction at center point pk, and Gok =
cp
R − ĉp is the corresponding groundtruth.

The overall loss function is

L = λfLf + λpLp + λsLs + λoLo

where λf , λp, λs and λo are the loss weights corresponding to
the four parts.

C. Foreground Segmentation Label Generation

The foreground segmentation label is generated to train the
foreground region proposal network, which is a kind of boxes-
induced segmentation annotation [26].

We first project the groundtruth bounding box into the
corresponding location under the output stride. The pixel in the
label will be set to 1, if it locates within the projected bounding
box, otherwise set to 0. The size of label is H

R ×
W
R ×C, where

H and W are the height and width of the image, R is the output
stride, and C is the object categories in traffic object detection.

D. Midground

Fig. 5. Schematic diagram of the midground. Midground is the ring-shaped
area outside the foreground.

It is worth noting that some areas in the two-stage detectors’
RPN are classified as neither foreground nor background. An
anchor in Faster R-CNN [5] is labeled based on the overlap
with any groundtruth object.

FasterR− CNN [5]


foreground overlap > 0.7

background overlap < 0.3

ignored otherwise

Those ignored areas are the transition zone. In order to
locate the object accurately, the bounding box is usually
close to the edge of the object, which causes the resulting
segmentation label generated on the basis of that is a strict
foreground region, rarely including the surrounding area of
the object. The surrounding areas of the objects contain the
edge information, which is important to both the classification
and the regression. To deal with that, the concept of midground
is introduced. Midground region is defined as the ring-shaped
area outside the foreground region, as shown in Figure 5.

The pixels in midground region are set to 0.5 while gen-
erating the segmentation label. The factor (1 − Gfxyc

)β in
Lf makes the loss function give a higher tolerance to the
midground region. To a certain extent, the transition between
foreground and background area is realized by midground.

E. The introduction of Foreground Scale Information

The location information is only part of the foreground
information. It is worth noting that, due to the foreground
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TABLE I
STRUCTURE EXPERIMENTS ON KITTI VALIDATION SET

Car Pedestrian Cyclist Runtime
Easy(%) Moderate(%) Hard(%) Easy(%) Moderate(%) Hard(%) Easy(%) Moderate(%) Hard(%) /ms

CenterNet 91.6 ± 0.9 87.5 ± 0.2 79.1 ± 0.2 75.5 ± 0.3 65.9 ± 0.3 57.5 ± 0.5 78.1 ± 1.0 58.3 ± 0.7 55.6 ± 0.6 69
Up Branch 92.0 ± 0.9 88.4 ± 0.1 79.7 ± 0.1 75.7 ± 0.4 67.6 ± 0.6 59.1 ± 0.6 77.8 ± 0.7 57.8 ± 0.7 55.2 ± 0.6 80
Self Branch 94.0 ± 1.3 88.7 ± 0.1 79.8 ± 0.1 77.8 ± 0.1 68.6 ± 0.6 61.0 ± 0.4 80.3 ± 1.0 58.7 ± 0.7 55.6 ± 0.6 79
Fusion(Summation) 93.8 ± 1.4 88.4 ± 0.1 79.6 ± 0.1 77.4 ± 0.3 67.6 ± 0.3 60.5 ± 0.2 80.1 ± 0.4 59.8 ± 0.4 56.9 ± 0.7 84
Fusion(Concatenation) 92.6 ± 1.1 88.5 ± 0.1 79.7 ± 0.1 76.2 ± 0.3 66.5 ± 0.3 58.2 ± 0.7 81.2 ± 1.2 60.1 ± 1.0 57.3 ± 0.9 87

region proposal network is category-based, the proposals of
each category actually contain the scale information of the
object. Introducing the foreground scale information into the
regression process can assist the scale prediction. Therefore,
the foreground region proposals under different categories are
concatenated with the foreground feature maps in the FII-
CenterNet as the input of regression.

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed FII-CenterNet on two public datasets, KITTI [27] and
PASCAL VOC [28]. The experiments are implemented in the
Pytorch on a machine with NVIDIA Titan Xp GPUs, CUDA
9.0 and cuDNN v7.

A. Implementation Details

1) Experiments on KITTI: The experimental dataset is
obtained from the KITTI object detection benchmark, which
consists of 7481 labeled images and 7518 testing images. For
the KITTI benchmark does not provide groundtruth labels for
the testing set, we follow standard training and validation splits
in literature [29] [30] to implement our structure experiments
and ablation experiments. The labeled images are divided into
training set with 3712 images and validation sets with 3769
images. For cars it requires an overlap of 70%, while for
pedestrians and cyclists it requires an overlap of 50% for a
detection. Detections in ’don’t care’ areas or detections which
are smaller than the minimum size do not count as false
positive. Three-level difficulties including ’Easy’, ’Moderate’
and ’Hard’ are defined in literature [27].

The original image resolution is kept and the size is pad to
1280× 384. We set all of the loss weight to 1 in experiments
on KITTI. The network is trained on one GPU with the batch
size of 8. We use Adam optimizer [31] with a initial learning
rate of 10−4. It is trained for 70 epochs, with learning rate
dropped at the 45 (10−5) and 60 (10−6) epoch, respectively.
Flip augmentation is used in testing.

2) Experiments on PASCAL VOC: The dataset is collected
by Everingham et al. [28] for visual object category recogni-
tion and detection. We train on VOC 2007 and VOC 2012
trainval sets, and test on VOC 2007 test set. It contains
16551 training images and 4962 testing images. The annotated
images are compiled from the Flickr photo-sharing website
and has great variability in object size, orientation pose, illumi-
nation position and occlusion. The original dataset consists of
20 categories. We only evaluate on the four concerned traffic
object categories: ’car’, ’bicycle’, ’motorbike’ and ’person’.

The evaluation metric is mean average precision (mAP) of the
four traffic object categories.

We experiment our FII-CenterNet in a small training reso-
lution. The input size is 384 × 384. We set λs = 0.1, while
all other hyper-parameters in loss function are the same as
the KITTI experiments. The network is trained on one GPU
with the batch size of 32. Adam optimizer [31] is used with
an initial learning rate of 1.25 × 10−4. It is trained for 140
epochs, with learning rate dropped at the 90 (1.25 × 10−5)
and 120 (1.25× 10−6) epoch, respectively. Flip augmentation
is used in testing.

B. Structure Experiments on KITTI Validation Set

We evaluate the structure of the foreground region proposal
network in this subsection. Two feasible foreground region
proposal methods are proposed in the previous section, which
correspond to the up branch and the self branch in the network.
We conduct experiments on the two structures, and explore the
performance under different fusion methods at the same time.
Two common fusion methods are used, i.e., summation and
concatenation. The results are reported in Table I.

The validation AP fluctuates by up to 10% for the small
recall thresholds. We thus train 5 models per experiment and
report the average with standard deviation. The baseline for
all experiments in this subsection is the original CenterNet.

First of all, no matter which foreground region proposal
method is adopted, almost all of the performances are better
than the baseline. The improvements demonstrate the effec-
tiveness of the introduction of foreground location information.

Secondly, when evaluating our two structures and the two
fusion methods of them, it can be seen that the self branch
has the best performance for car and pedestrian detection.
For moderate difficulty, the detection accuracy of car and
pedestrian are improved by 1.2% and 2.7%, respectively.
There is a 3.5% enhancement for pedestrian’s hard AP (an
indicator influenced largely by small object detection), indi-
cating that the structure helps to eliminate the interference of
complex background information. For the detection of cyclist,
the performance of the concatenation is the best, and the
detection accuracy of moderate difficulty is increased by 1.8%.
Besides, it can be seen that the two fusion methods have
different performances on the three categories. Concatenation
could maintain complete information outputted from previous
operations/layers, while summation simply sums the outputs
so that it generally loses part of the information. Moreover,
summation can be regarded as a special case of concate-
nation for the multichannel convolution operation, in which
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Fig. 6. Visualization examples of FII-CenterNet for traffic object detection. Left: the result of foreground region proposal; Middle: the detected center points;
Right: the final detection result.

the convolutional weights are same for all the channels and
the weights between the channels are set to one manually.
Therefore, the model using concatenation is more complex and
is more suitable for the detection of complex object, but it may
lead to overfitting for the simple object detection at the same
time. Hence, concatenation achieves a better performance for
detecting the most complex object ’cyclist’ among the three
testing objects, while its performance is close or even poorer
than summation for detecting cars and pedestrians.

It can be seen that while the structures effectively improve
the performance of traffic object detection, they also slow
down the detection speed. Different methods slow down the
speed to different extents, among which the self branch
introduces the least time-consuming increment.

Theoretically, foreground region proposal by the self branch
is a better choice. The reasons are listed as follow.

Analysis from the computational complexity. Foreground
region proposal by the self branch is directly based on the
results of feature maps, no additional decode operation is
required. Thus the additional computational complexity is
relatively small. Correspondingly, it will consume less time,
and is more suitable for the field of intelligent transportation
systems with high requirement of detection efficiency.

Analysis from the detection network structure. It produces
the foreground region proposal on the basis of feature maps,
which makes the feature extraction network pay more attention
to the foreground region to get more accurate proposals. There-
fore, the feature maps will contain more features about the
foreground region, which can help to improve the performance
of both classification and regression.

The experimental results meet the expectations of the theo-
retical analysis above. Taking into account that the occurrence
frequency of car and pedestrian is higher than that of cyclist
in actual traffic scenarios, and considering the object detection
efficiency at the same time, the self branch is finally selected
as the actual structure. The following experiments are also
carried out on the basis of this structure.

C. Ablation Experiments on KITTI Validation Set

The baseline for all experiments in this subsection is the
basic FII-CenterNet, which only introduces the location infor-
mation of the foreground region. We explore the effectiveness
of the midground and the introduction of foreground scale
information in this subsection. For the same reason, five mod-
els are trained per experiment and the average with standard
deviation is reported. The results are shown in Table II.
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TABLE II
ABLATION EXPERIMENTS ON KITTI VALIDATION SET

Car Pedestrian Cyclist
Easy(%) Moderate(%) Hard(%) Easy(%) Moderate(%) Hard(%) Easy(%) Moderate(%) Hard(%)

baseline 94.0 ± 1.3 88.7 ± 0.1 79.8 ± 0.1 77.8 ± 0.1 68.6 ± 0.6 61.0 ± 0.4 80.3 ± 1.0 58.7 ± 0.7 55.6 ± 0.6
+ scale information 93.3 ± 0.9 88.7 ± 0.1 79.8 ± 0.1 77.6 ± 0.7 69.7 ± 0.5 61.2 ± 0.4 81.4 ± 1.0 59.7 ± 0.4 56.9 ± 0.4
+ midground 94.9 ± 1.0 88.8 ± 0.1 80.0 ± 0.2 77.3 ± 0.4 68.6 ± 0.6 60.1 ± 0.7 79.4 ± 0.8 59.1 ± 0.5 56.2 ± 0.6
+ scale information & midground 93.3 ± 0.8 88.8 ± 0.1 80.0 ± 0.1 78.5 ± 0.6 70.1 ± 0.3 61.3 ± 0.3 79.7 ± 0.7 59.6 ± 0.7 56.5 ± 0.6

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON KITTI TEST SET

Car Pedestrian Cyclist
FPS Easy(%) Moderate(%) Hard(%) Easy(%) Moderate(%) Hard(%) Easy(%) Moderate(%) Hard(%)

TuSimple [32] [33] 0.63 95.12 94.47 86.45 88.87 78.40 73.66 83.68 75.22 65.22
MonoPair [34] 16.67 96.61 93.55 83.55 78.81 61.57 56.51 74.77 56.37 48.37
RRC [35] 0.28 95.68 93.40 87.37 85.98 76.61 71.47 86.81 76.81 66.59
sensekitti [36] 0.22 94.79 93.17 84.38 82.72 68.41 62.72 82.90 73.48 64.03
SJTU-HW [37] [38] 1.18 96.30 93.11 82.21 87.17 75.81 69.86 /
EAS [39] 3.70 93.91 91.02 77.93 86.71 76.07 70.02 /
Deep3DBox [40] 0.67 94.71 90.19 76.82 / 84.36 74.78 64.05
SubCNN [41] 0.50 94.26 89.98 79.78 84.88 72.27 66.82 79.36 71.72 62.74
3DOP [42] 0.33 92.96 89.55 79.38 83.17 69.57 63.48 80.52 68.71 61.07
Mono3D [43] 0.24 94.52 89.37 79.15 80.30 67.29 62.23 77.19 65.15 57.88
MS-CNN [44] 2.50 93.87 88.68 76.11 85.71 74.89 68.99 84.88 75.30 65.27
Faster R-CNN [5] 0.50 88.97 83.16 72.62 79.97 66.24 61.09 72.40 62.86 54.97
Ours 11.11 94.48 91.03 83.00 81.32 67.31 61.29 79.04 66.54 57.76

Fig. 7. Precision-recall curves on KITTI benchmark. From left to right are the precision-recall Curve of car, pedestrian and cyclist. For moderate difficulty,
the detection accuracy of the three typical traffic object categories achieve 91.03%(car), 67.31%(pedestrian) and 66.54%(cyclist), respectively.

First of all, the improvement from the first row to the second
row in the table demonstrates that the introduction of scale
information can effectively improve the detection performance.
The improvement for pedestrian and cyclist detection is more
obvious. For Moderate difficulty, the detection accuracy of
pedestrian and cyclist has been improved by 1.1% and 1.0%,
respectively. As a matter of fact, the detection performance
of car has also been slightly improved, but it cannot be seen
from the table due to rounding.

Secondly, the effectiveness of the midground is verified
in the third row. It can be seen that the introduction of the
midground makes the detection accuracy of car and cyclist
improved. For moderate difficulty, the accuracy is improved
by 0.1% and 0.4%, respectively. It is increased by 0.2%
and 0.6% for hard AP. But at the same time, the detection
performance of pedestrian has declined to a certain extent.

Finally, when both the foreground scale information and
midground are introduced, the detection accuracy of car and
pedestrian reaches the best. The detection accuracy is im-
proved by 0.1% and 1.5% for moderate AP, respectively,
and it is 0.2% and 0.3% for hard AP. However, for cyclist

detection, the accuracy is best when only the foreground
scale information is introduced. The introduction of midground
has a certain effect on improving the performance of traffic
object detection, but sometimes it will reduce the promotion
effect of the introduction of foreground scale information.
Considering the transition effect of midground, we think that
it may introduce uncertainty into the scale information, which
ultimately leads to the weakening phenomenon.

The visualization examples of FII-CenterNet on KITTI
validation set are shown in Figure 6.

D. Comparisons with Other Approaches on KITTI Test Set
In order to compare with other state-of-the-art approaches,

we trained our FII-CenterNet with 7481 labeled data, and
then submitted the results to the KITTI leaderboards. Our FII-
CenterNet achieves the state-of-the-art performance in both
accuracy and efficiency on KITTI benchmark.

For moderate difficulty, the detection accuracy of the three
typical traffic object categories achieve 91.03% (car), 67.31%
(pedestrian) and 66.54% (cyclist) with high detection effi-
ciency. The precision-recall curves are shown in Figure 7. The
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TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON PASCAL VOC 2007 TEST SET

Methods Backbone Input Size mAP(%) FPS Bicycle(%) Car(%) Motorbike(%) Person(%)
Single-Stage Detectors

RON384 [45] VGG-16 384× 384 81.3 15.0 82.4 84.3 82.4 76.2
SSD300 [2] VGG-16 300× 300 80.8 58.0 80.2 84.2 82.6 76.2
SSD300+VSSA(Horizontal) [46] MobileNet 300× 300 84.0 / 88.3 86.7 84.6 76.4
SSD300+VSSA(Vertical) [46] MobileNet 300× 300 83.8 / 88.4 87.5 83.4 75.8
SSD512 [2] VGG-16 512× 512 84.0 23.0 84.7 87.5 83.9 79.7
SSD321 [9] ResNet-101 321× 321 83.3 11.2 84.6 84.0 85.4 79.1
SSD513 [9] ResNet-101 513× 513 86.5 6.8 87.5 88.1 87.5 83.0
DSSD321 [9] ResNet-101 321× 321 84.4 9.5 84.9 86.2 86.7 79.7
DSSD513 [9] ResNet-101 513× 513 86.5 5.5 86.2 88.7 87.5 83.7

Two-Stage Detectors
Fast R-CNN [4] VGG-16 ≈ 1000× 600 75.8 0.5 78.1 78.6 76.6 69.9
Faster R-CNN [5] VGG-16 ≈ 1000× 600 79.5 7.0 79.0 84.7 77.5 76.7
Faster R-CNN [5] ResNet-101 ≈ 1000× 600 81.3 2.4 80.7 85.3 80.9 78.4
ION [47] VGG-16 ≈ 1000× 600 80.0 1.3 79.2 84.2 81.3 75.3
R-FCN [48] ResNet-101 ≈ 1000× 600 84.2 9.0 87.2 88.5 79.9 81.2

Detectors Exploiting Segmentation Information
MR-CNN [22] VGG-16 ≈ 1000× 600 82.9 0.03 84.1 85.9 85.0 76.4
DES [23] VGG-16 300× 300 85.4 / 86.0 87.3 87.5 80.8
Shrivastava et al. [21] VGG-16 ≈ 1000× 600 81.7 / 80.5 86.5 81.6 78.2

Foreground FII-CenterNet
Loaction Scale Midground Backbone Input Size mAP(%) FPS Bicycle(%) Car(%) Motorbike(%) Person(%)

DLA-34 384× 384 83.7 35.1 84.8 84.9 84.2 80.7
X DLA-34 384× 384 84.9 86.4 85.9 86.0 81.4
X X DLA-34 384× 384 85.6 86.7 86.5 87.0 82.1
X X X DLA-34 384× 384 86.2 30.0 87.3 87.1 87.8 82.7

pedestrian detection accuracy can be improved to 71.01%, if
multi-scale augmentation is used in testing.

Table III makes the comparison between the FII-CenterNet
and other published vision-based methods on KITTI bench-
mark. We only compare with the method which is evaluated on
at least two traffic object categories. The comparison is mainly
based on the moderate difficulty of the three-level difficulties.
For detection accuracy, only TuSimple[32] [33], RRC[35] and
sensekitti[36] are better than our method on all the three traffic
categories. The detection efficiency of FII-CenterNet is better
than most of the methods, except for MonoPair [34]. However,
the detection accuracy on pedestrian and cyclist of MonoPair
[34] are 61.57% (5.74% lower) and 56.37% (10.17% lower),
respectively.

The typical two-stage method, Faster R-CNN [5], achieves
83.6%, 66.24% and 62.86% on the three categories. FII-
CenterNet performs better than it with a large margin, not
to mention the detection speed. Our method also has a
comparable accuracy of car detection with EAS [39], which
is a recent state-of-the-art anchor-based detector for traffic
object detection. FII-CenterNet also achieves comparable per-
formance with other prevalent detectors, i.e., Deep3DBox [40],
3DOP [42] and Mono3D [43], at a faster speed. Deep3DBox
is based on slow-RCNN, 3DOP is on the basis of Fast-RCNN,
and Mono3D is Faster R-CNN based.

E. Experiments on PASCAL VOC 2007

We further compare our FII-CenterNet with other represen-
tative methods on PASCAL VOC 2007, which is reported in
Table IV. All methods are trained on VOC 2007 and VOC
2012 trainval sets and tested on VOC 2007 test set. Our FII-

CenterNet also achieves the state-of-the-art performance in
both accuracy and efficiency on VOC 2007.

FII-CenterNet achieves 86.2% mAP for traffic object de-
tection when using input size of 384 × 384. For the four
concerned traffic object categories, FII-CenterNet achieves
87.3% (bicycle), 87.1% (car), 87.8% (motorbike) and
82.7% (person), respectively. The corresponding precision-
recall curves are shown in Figure 8 (a). Besides, several
versions of FII-CenterNet are evaluated on VOC 2007 test
set. The ablation experiments results verify the effectiveness
of each module.

First of all, FII-CenterNet outperforms all single-stage meth-
ods using such small input size, e.g., RON384 [45], SSD300
[2], DSSD321 [9]. The first section in Table IV. contains some
representative single-stage methods. Among the methods using
small input size, DSSD321 [9] has the best detection accuracy.
It achieves 84.4% mAP, which is still 1.8% lower than our
method. Furthermore, these methods can be improved by using
the larger input size. DSSD improves the mAP from 84.4%
to 86.5% due to the input size, but the detection efficiency is
decreased. Maintaining the small input size, our method has
a comparable performance.

Secondly, we also compare our method with some repre-
sentative two-stage detectors, e.g., Fast R-CNN [4], Faster
R-CNN [5], ION [47] and R-FCN [48], which is shown in
second section of Table IV. There are two different version
of Faster R-CNN. Faster R-CNN with VGG-16 backbone
network achieves 79.5% mAP, while Faster R-CNN with
ResNet-101 backbone network achieves 81.3% mAP. Our
method performs better than it with a large margin. R-FCN
[48] has the best detection accuracy among the two-stage
methods shown in Table IV. When compared with it, FII-
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Fig. 8. Precision-recall curves on PASCAL VOC 2007 test set. All methods
are trained on VOC 2007 and VOC 2012 trainval sets and tested on VOC 2007
test set. We train FII-CenterNet on the original 20 categories when compare
with other methods. The performance is shown in (a). For the four concerned
traffic object categories, FII-CenterNet achieves 86.9%(bicycle), 88.2%(car),
86.7%(motorbike) and 84.7%(person), respectively. If it is trained only on
the four concerned traffic object categories, the mAP can be improved from
86.2% to 86.6%. The performance is shown in (b).

CenterNet achieves a 2.0% performance improvement.
The third section in Table IV. contains other object detection

methods exploiting segmentation information. Our method still
shows a significant performance improvement compared with
them. MR-CNN [22] is based on Faster R-CNN and DES [23]
is on the basis of SSD.

As for the four concerned traffic object categories, our
method has the best performance on motorbike detection
compared with other methods. It also outperforms most of the
methods using small input size on the other three categories.
SSD300+VSSA(Vertical) [46] achieves the best accuracy on
bicycle detection, which benefits from multi-resolution feature
learning module and the vertical spatial sequence attention
(VSSA) module. DSSD513 [9] has the best performance on
car detection and achieves 88.7% AP. The highest accuracy on
person detection is 83.7%, while our method achieves 82.7%
AP.

Although FII-CenterNet can not achieve the best perfor-
mance on every category, it achieves the best speed-accuracy
trade-off among all the methods compared in Table IV. The
test results on VOC 2007 highlight the effectiveness of our
method.

For fairness, FII-CenterNet is trained on the original 20 cat-
egories when compared with other methods. The performance
can be improved, if it is trained only on the four concerned
traffic object categories. The mAP can be improved from
86.2% to 86.6% due to that. The corresponding precision-
recall curves are shown in Figure 8 (b).

V. CONCLUSION

In conclusion, aiming to improve the performance of the
anchor-free detectors for traffic object detection, this paper
proposes FII-CenterNet, which introduces the foreground in-
formation to eliminate the interference of the complex back-
ground information in traffic scenes. The foreground region
proposal network is based on semantic segmentation, which
is supervised by the segmentation label generated from the
bounding box label. Midground is introduced as the transition
between foreground and background, which can provide rich
edge information of the objects. The detection accuracy is
efficiently improved for the introduction of both foreground
location and scale information, which is verified by the exper-
imental results on KITTI validation set. The results on KITTI
benchmark and PASCAL VOC 2007 demonstrate that our FII-
CenterNet achieves the state-of-the-art performance in both
accuracy and efficiency.

For the future research, the segmentation branch can be
added into the network to deal with the traffic object segmen-
tation task, which can simply on the basis of the foreground
region proposals. Besides, the detection results can be further
used in other ITS applications, such as traffic congestion
detection [49].
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