
QUEST: Query Stream for Practical Cooperative Perception

Siqi Fan1, Haibao Yu2,1, Wenxian Yang1, Jirui Yuan1, Zaiqing Nie1*

1Institute for AI Industry Research (AIR), Tsinghua University 2 The University of Hong Kong

Abstract— Cooperative perception can effectively enhance
individual perception performance by providing additional
viewpoint and expanding the sensing field. Existing cooperation
paradigms are either interpretable (result cooperation) or
flexible (feature cooperation). In this paper, we propose the
concept of query cooperation to enable interpretable instance-
level flexible feature interaction. To specifically explain the con-
cept, we propose a cooperative perception framework, termed
QUEST, which let query stream flow among agents. The cross-
agent queries are interacted via fusion for co-aware instances
and complementation for individual unaware instances. Taking
camera-based vehicle-infrastructure perception as a typical
practical application scene, the experimental results on the real-
world dataset, DAIR-V2X-Seq, demonstrate the effectiveness
of QUEST and further reveal the advantage of the query
cooperation paradigm on transmission flexibility and robustness
to packet dropout. We hope our work can further facilitate
the cross-agent representation interaction for better cooperative
perception in practice.

I. INTRODUCTION

Despite the significant progress have been made in in-
dividual perception, intelligent vehicles still have to face
challenges of unobservable dangers caused by occlusion and
limited perception range. Different from the individual per-
ception which senses the surrounding with its own onboard
sensor system, cooperative perception, especially vehicle-
infrastructure cooperative perception (VICP), shed light on
reliable autonomous driving in a complex traffic environment
and have achieved increasing attention recently [1], [2].
Leveraging the roadside sensor system with more flexible
mounting height and posture, the cooperative perception
field is effectively extended, and some challenging individual
perception cases (e.g., long-range small object detection) can
be readily tackled in VICP setting [3], [4].

Advantages are usually followed by new challenges. Nat-
urally, the first and foremost question is how to cooperate
between multiple agents. According to what is shared among
agents, there are three typical cooperation paradigms [1],
[2], [5], including data cooperation (early fusion), feature co-
operation (intermediate fusion), and result cooperation (late
fusion). Data cooperation [6], [7] is regarded as the upper
bound of performance since the comprehensive information
is interchanged along with raw data across agents. However,
the high transmission cost of massive data is unbearable in
practical applications. Result cooperation is widely deployed
in practice due to the advantages of bandwidth-economic,
where agents only share predictions [3], [6]. Nevertheless,
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Fig. 1. Query cooperation enables instance-level feature cooperation, which
is more interpretable than scene-level feature cooperation and more flexible
than instance-level result cooperation.

the significant information loss in result cooperation makes it
highly reliant on accurate individual predictions. Compared
with those two paradigms, feature cooperation [8]–[15] is
more flexible and performance-bandwidth balanced, as the
information loss is controllable via feature selection and
compression. Even though some of them have achieved
region-level feature selection [16], the interpretability of
feature selection and fusion are still limited, since the scene-
level features abstractly represent the whole observable re-
gion. It is worth noting that the interaction between pre-
dictions in result cooperation is instance-level, resulting in
physically interpretable cooperation targets.

Addressing that, we naturally come up with a question: is
there an eclectic approach for cooperative perception, which
is both interpretable and flexible?

Inspired by the success of transformer-based methods
in individual perception tasks [17]–[19], we propose the
concept of query cooperation, which is an instance-level fea-
ture interaction paradigm based on the query stream across
agents, standing on the midpoint between scene-level feature
cooperation and instance-level result cooperation (Figure 1).
The instance-level cooperation makes it more physically
interpretable, and feature interaction introduces more in-
formation elasticity. Specifically, we propose a framework,
named QUEST, as a representative approach to describe the
concept, where queries flow in the stream among agents.
Firstly, each agent performs individual transformer-based
perception. Every query output from the decoder corresponds
to a possible detected object, and the query will be shared
if its confidence score meets the requirement of the request
agent. As the cross-agent queries arrive, they are utilized for
both query fusion and complementation. Theoretically, query
fusion can enhance the feature of the sensed instance with the
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feature from other viewpoints, while query complementation
can directly complement the unaware instance of the local
perception system. Then, the queries are used for cooper-
ative perception, resulting in the final perception results.
To evaluate the performance of QUEST, we generate the
camera-centric cooperation labels on DAIR-V2X-Seq based
on the single-side groundtruth labeled at the image-captured
timestamps *.

Our contributions are summarized as follows:
• We propose the concept of query cooperation paradigm

for cooperative perception task, which is more inter-
pretable than scene-level feature cooperation and more
flexible than result cooperation.

• A query cooperation framework, termed QUEST, is
proposed as a representative approach. The cross-agent
queries interact at the instance level via fusion and
complementation.

• We take the camera-based vehicle-infrastructure cooper-
ative object detection as a typical application scene. The
experimental results on the real-world dataset, DAIR-
V2X-Seq, demonstrate the effectiveness of QUEST and
further show the advantage of the query cooperation
paradigm on flexibility and robustness. Besides, the
camera-centric cooperation labels are generated to facil-
itate the further development of the related researches.

II. RELATED WORKS

In this section, we briefly review two related topics,
cooperative perception and query-based perception.

A. Cooperative perception

To break the sensing range limitation of onboard sensor
systems and eliminate the influences of unobservable dan-
gers, cooperative perception has attracted increasing atten-
tion in recent years. The most intuitive approach is data
cooperation, which transmits raw sensor data and funda-
mentally overcomes the occlusion and long-range percep-
tion problem. Since 3D data can be directly aggregated,
most data cooperation approaches are LiDAR-based [6],
[7]. Although raw data reserves comprehensive information,
the high transmission cost makes it challenging to deploy
in practice. For the convenience of communication, result
cooperation only transmits perception predictions, which
is the most bandwidth-economic [3], [6]. In addition, the
instance-level bounding box aggregation makes the coop-
eration more physically interpretable. However, the perfor-
mance of result cooperation highly relies on the accurate
individual perception and precise parameters for coordinate
system transformation. Therefore, recent methods pay more
attention to feature cooperation, which can achieve better
performance-bandwidth balance [8]–[16]. Compared with the
simple bounding box, the feature map is more flexible for
both fusion and compression, but the scene-level feature
cooperation is redundant for object perception and less

*The original cooperation groundtruth is labeled at LiDAR’s timestamp
[3], which is not suitable for camera-based researches.

explainable. Aiming on interpretable flexible cooperation, we
propose the concept of query cooperation, which transmits
instance-level features across agents.

B. Query-based perception

Since the pioneering work DETR [17] is proposed for
2D object detection, the object query has been adopted for
more and more perception tasks, including 3D detection
and tracking. Query-based methods typically utilize sparse
learnable queries for attentive feature aggregation. DETR3D
[18] predicts 3D locations of queries and obtains the cor-
responding image features via projection. PETR [20] turns
to embed image features with 3D position and directly
learns the mapping relations using the attention mechanism.
BEVFormer [21], [22] tackles the perception from a bird-
eye view with grid-shaped queries and manages to realize
spatial-temporal feature interaction through the deformable
transformer. Leveraging temporal information, query-based
methods are also beneficial to object tracking. To model
cross-frame object association, MOTR [19] and TrackFormer
[23] propose track query based on single frame object query.
MUTR [24] and PF-Track [25] utilizes track query and
achieve promising tracking performance for multi-view tasks.
All of the existing query-based methods are developed for
individual perception, we further extend it to cooperative
perception in this paper. Specifically, we propose the QUEST
framework to achieve a query stream across agents and
design the cross-agent query interaction module for query
fusion and complementation.

III. QUERY COOPERATION PARADIGM

What to share and how to cooperate are the two main
concerns for practical cooperative perception, especially con-
sidering the limited bandwidth of the wireless communica-
tion. To design a better cooperation strategy, it is expected
to be both interpretable and flexible, since interpretability
leads to controllable cooperation and flexibility provides
more operation space and possibilities. Considering that,
we propose the query cooperation paradigm, which shares
features across agents and performs cooperation via instance-
level feature interaction.

For clarity, we take vehicle-infrastructure cooperative per-
ception as an example.

Query Generation. Both vehicle and infrastructure per-
form individual perception all the time, and each perception
prediction P is corresponded to an object query Q, according
to the theory of transformer-based perception,

P = g(Q) = g(f(D)) (1)

, where f(·) is the feature extraction function for queries,
g(·) is the query-based prediction function, and D denotes
the input sensor data.

Query Transmission. The query cooperation is triggered
when the vehicle requests additional information from infras-
tructure side. Noting that the query request can be along with



Fig. 2. Architecture of QUEST framework.

a specific instance-level requirement, like confidence thresh-
old and region mask. Then, the queries met the requirement
Qinf are posted to the vehicle side.

Query Interaction. Both the received queries Qinf and
local queries Qveh are leveraged for further cooperative
perception, and the query interaction strategy is to determine
how to enhance and complement the Qveh with Qinf .

Qcoop = h(Qveh,Qinf ) (2)

, where h(·) denotes the query interaction function and Qcoop

is the generated cooperative query set.
Query-based Prediction. Qcoop is further fed into query-

based prediction heads for perception tasks, resulting in the
final cooperative perception predictions Pcoop.

Pcoop = g(Qcoop). (3)

IV. QUEST FRAMEWORK

To elaborate on the concept of query cooperation, we de-
scribe the proposed representative framework in this section.
Benefiting from the deployment convenience, camera-based
sensor systems are widely adopted in practical applications.
Thus, we take the camera-based vehicle-infrastructure co-
operative perception as a typical scenario to describe the
framework.

A. Overall Architecture

As illustrated in Figure 2, QUEST achieves cooperative
perception via a cross-agent QUEry STream. The object
queries flow from the infrastructure side to the vehicle
side when query cooperation is triggered by the vehicle.
The framework mainly consists of two functional modules,
including single-agent query-based perception modules and
a cross-agent query interaction module.

For every single agent, like the vehicle, the query-based
perception module is continuously running to ensure the
basic individual perception capability, leveraging its own
sensor data obtained from the onboard system. It will always
output perception predictions whether the query cooperation
is triggered or not. Theoretically, every query-based percep-
tion method can be directly plugged in, and we adopt PETR
[20] as an example in this paper. The captured image is
fed into the backbone for feature extraction, and both the

feature and calibration parameters are input to a transformer-
based decoder to perform object detection. Each prediction
is matched with a corresponding object query, and it is
the source of the query stream. Considering the limited
bandwidth of wireless communication, the infrastructure-side
query stream is shunted according to a confidence score
threshold required by the vehicle side, resulting in a high-
quality sparse feature transmission.

When the infrastructure-side query stream flows to the
vehicle side, it joins the local query stream to form a cooper-
ative query stream. The cross-agent query interaction module
is designed to integrate the object queries from different
sources, which is elaborated in the following subsection.
The joint query stream finally flocks to the transformer-based
decoder, and the cooperative predictions are output.

B. Cross-agent Query Interaction

Similar to all the other cooperation paradigms, how to
aggregate the cross-agent information is always the most
important part of the framework. Benefiting from the in-
terpretable instance-level cooperation, the query interaction
mechanism is natural, including query fusion for co-aware
objects and query complementation for unaware objects.

In the first place, the corresponding location of the cross-
agent queries should be transformed into a unified coor-
dinate system, which is generally the vehicle-side LiDAR
coordinate system. Since each query is along with a 3D
reference point, the transformation is readily performed using
the calibration parameters (rotation and translation matrix).

The instance-level predictions are matched according to
their locations in result cooperation. Although the strategy
can be directly adopted in QUEST, it relies on both the
accurate location prediction and precise coordinate transfor-
mation. To realize more robust query matching, we propose
the dual-space query embedding.

Dual-space Query Embedding takes both location infor-
mation and semantic information into consideration, which
is embedded in physical and feature space. For location
embedding, we expand the exact center to a grid to give
a high tolerance of location noise, as shown in Figure 3.
The 3D coordinates in the grid are concatenated to form grid
embedding after normalization. However, the loose constraint
of location will inevitably introduce false-matched pairs.



Fig. 3. Illustration of the location grid for dual-space query embedding.
Compared with the exact center-based matching, grid-based matching is
more robust with location noise.

We further take semantic information into account to pay
additional attention to appearance. Technically, the query’s
feature is concatenated with the grid embedding Eg , and the
dual-space query embedding Ê is generated using a multi-
layer perceptron (MLP) encoder.

Ê = MLP(Eg ⊕ Ef ) (4)

, where ⊕ is the concatenation operation, MLP denotes the
multi-layer perceptron encoder, and Ef is the semantic em-
bedding. We directly regard the query’s feature as semantic
embedding in this work.

Cross-agent Query Alignment is a specific and necessary
operation for query cooperation, which is mainly due to
the implicit encoding of the instance-level orientation. The
prediction’s orientation is explicitly represented in result
cooperation, and the orientation of the dense feature map
is directly related to the corresponding coordinate system.
Therefore, both of them can achieve orientation transforma-
tion via explicit coordinate system transformation. However,
the implicit encoded feature in instance-level query can not
be manually operated, even if the orientation-related feature
is decoupled from others. We adopt MLP for feature space
alignment, which enables implicit orientation transformation
and cross-agent feature alignment.

Q̂inf = MLP(Qinf ⊕RI2V ) (5)

, where Qinf is the infrastructure-side query, and RI2V is
the rotation matrix from infrastructure side to vehicle side.

Attentive Query Fusion is to enhance the vehicle-side
aware queries with the queries from the infrastructure-side
view. The fusion is attentively guided by the dual-space
query embedding. Specifically, we calculate the embedding
distance between each two query pairs and generate the
attentive fusion weights on the basis of that via MLP.
Take the i − th vehicle-side query Qi

veh and the j − th
infrastructure-side query Q̂j

inf as an example,

Wi,j = MLP(||Ê i
veh − Êj

inf ||2) (6)

, where Ê i
veh and Êj

inf denote the generated dual-space query
embedding, and || · ||2 is the L2 distance function. Then,
the vehicle-side query stream is updated and formed to the
cooperative query stream Qcoop via weighted summation.

Qi
coop = Qi

veh +Wi,j ∗ Q̂j
inf (7)

Fig. 4. Illustration of the cross-agent query complementation. The local
queries with low confidence scores are replaced with the received queries
to reduce additional computational costs.

Query Complementation is to complement the vehicle-
side unaware object queries with the received infrastructure-
side queries. Instead of simply inserting the cross-agent
queries into the local query stream, we turn to a replacement
strategy to reduce the extra computational cost. Firstly, the
vehicle-side query is sorted according to the confidence
score. The received queries are then used to replace the
queries with low confidence scores, as shown in Figure 4.

V. EXPERIMENTS

This section describes experiments on the real-world
vehicle-infrastructure dataset. We provide detailed studies
and qualitative analysis on effectiveness, flexibility of query
transmission, and robustness to packet dropout.

A. Experimental Setting

Datasets. We evaluate the proposed QUEST framework
on the large-scale real-world cooperative dataset DAIR-V2X-
Seq [26], which consists of more than 15,000 frames cap-
tured from 95 representative scenes. It comprises 7445 image
pairs for training and 3316 pairs for validation. We follow
the official split scheme and report experimental results on
the validation set. The perception range for evaluation is set
as [0,−39, 100, 39] following the official setting. The input
images are resized to a fixed size of 540× 960.

Camera-centric cooperation labels. Since the asyn-
chronous capture frequency between camera and LiDAR,
there is always a misalignment between the image and the
original cooperation groundtruth (labeled at the LiDAR’s
timestamp) [3]. For the camera-based researches, we gen-
erate the cooperation annotations based on the single-side
groundtruth labeled at the image-captured timestamps. The
generated camera-centric cooperation labels are more accu-
rate, as shown in Figure 6.

Implementation Details. We employ VoVNetV2 [27] as
backbone, and the C5 feature is upsampled and fused with C4
feature following PETR [20]. AdamW optimizer [28], [29]
is adopted with a weight decay of 0.01. The initial learning
rate is set to 2× 10−4 and is scheduled according to cosine
annealing [30]. The model is trained for 100 epochs until
convergence. The same as [18], [20], [24], the model output
at most 300 objects during the inference time. Experiments
are implemented in PyTorch on a server with NVIDIA A100.



Fig. 5. Visualization examples at different scenes. Red: groundtruth. Blue: predictions of QUEST.

Fig. 6. Examples of the generated camera-centric cooperation labels and the
corresponding LiDAR-centric labels from [26]. Left: LiDAR-centric labels.
Right: camera-centric labels. The generated labels will be made publicly
available at GitHub upon publication.

B. Effectiveness Study

First of all, we compare our QUEST (two versions) with
vehicle-only and result cooperation approaches in Table I. All
reported methods use PETR as an individual perception mod-
ule. The full version QUEST achieves 20.3% on APBEV |0.5
and 14.1% on AP3D|0.5, which outperforms result cooper-
ation with a large margin, not to mention the vehicle-only
approach. Benefiting from the cooperative perception, both
distant and occluded objects can be detected, as shown in
Figure 5.

Theoretically, there are two ways that query cooperation
can boost the perception performance. One is the query
enhancement for co-aware objects, the other is the query
complementation for unaware objects caused by occlusion
or the long-range problem. Therefore, we also report the
results of an ablated version (QUEST-f), which only adopts
query fusion as cross-agent query interaction, and the query
complementation is switched off.

Noting that QUEST-f performs better than the vehicle-
only approach, but is slightly worse than result cooperation.
It demonstrates that: (1) If an object can be observed by
both vehicle and infrastructure, query fusion can effectively
enhance the instance-level feature leveraging the informa-

TABLE I
EFFECTIVENESS STUDY ON QUEST FRAMEWORK. QUEST-F IS AN

ABLATED VERSION THAT ONLY ADOPTS QUERY FUSION (WITHOUT

QUERY COMPLEMENTATION) FOR CROSS-AGENT QUERY INTERACTION.

Approach APBEV (%) AP3D(%)
IoU0.3 IoU0.5 IoU0.3 IoU0.5

vehicle-only 17.8 10.9 15.6 9.4
result coop. 29.9 14.7 20.7 10.7
QUEST-f 21.7 12.8 19.3 10.7
QUEST 39.4 20.3 33.3 14.1

tion from another viewpoint; (2) Query complementation
is more dominant compared with query fusion, since the
unobservable object lies in the blind area of the vehicle
can be replenished, which is in line with the motivation of
cooperative perception. The instance-level complementation
lets result cooperation outperform QUEST-f, but there is a
further performance lift when adopting query complemen-
tation. Although both of them are at the instance-level, the
advantage of query cooperation is more obvious.

C. Flexibility of Query Transmission

Benefiting from the interpretable instance-level coopera-
tion, the cross-agent information transmission is more flex-
ible via query selection. It can be regarded as an instance-
level spatial-wise information compression considering wire-
less bandwidth. QUEST employs confidence-based query
selection by filtering the queries under the required score
threshold. We report the performance at different thresholds
(from 0.1 to 0.8) in Table II.

TABLE II
PERFORMANCE UNDER DIFFERENT TRANSMISSION THRESHOLD.

Threshold APBEV (%) AP3D(%) Bytes
IoU0.3 IoU0.5 IoU0.3 IoU0.5

0.1 40.1 20.3 33.4 14.1 74.4K
0.2 39.5 20.3 33.3 14.1 60.0K
0.3 39.4 20.3 33.3 14.1 52.2K
0.4 39.0 20.1 33.2 14.1 43.8K
0.5 38.7 20.0 33.1 14.0 40.8K
0.6 38.3 19.7 32.5 13.8 38.2K
0.7 37.7 19.1 32.1 13.6 35.5K
0.8 36.7 18.5 30.9 13.1 31.9K

It can be seen that the requirement of transmission band-

https://github.com/AIR-THU/DAIR-V2X-Seq


width is significantly reduced as the selection threshold
increases (Figure 7). The transmission Bytes are only half of
the full package when we set a higher confidence threshold,
such as 0.5. Theoretically, a higher threshold leads to better
precision and worse recall. Although both APBEV and
AP3D inevitably decline due to the selection, the descending
range is acceptable.

Fig. 7. The change of performance and transmission cost under different
transmission thresholds.

Compared with region-level spatial-wise compression in
the existing feature cooperation approaches, instance-level
query selection is more fine-grained and interpretable. The
channel-wise query compression can further reduce band-
width requirements and make it more suitable for practical
applications.

D. Robustness to Packet Dropout
Packet dropout is inevitable for wireless communication,

and will severely affect the performance of cooperative
perception. The scene-level cooperation may be crashed
when the received data/feature is fragmentary due to the
packet dropout. Different from that, instance-level query
cooperation can naturally mitigate the influences by sending
the queries one by one, so the dropout will result in at most
partial query loss instead of the crippled framework.

To simulate the packet dropout, we manually set a dropout
ratio of query transmission during evaluation, and the results
are reported in Table III.

TABLE III
PERFORMANCE UNDER DIFFERENT TRANSMISSION PACKET DROPOUT

RATIOS. THE TRANSMISSION THRESHOLD IS SET TO 0.3.

Ratio APBEV (%) AP3D(%) Bytes
IoU0.3 IoU0.5 IoU0.3 IoU0.5

0.0 39.4 20.3 33.3 14.1 52.2K
0.3 33.7 17.3 28.5 12.5 36.5K
0.5 29.7 15.7 25.7 12.1 26.1K
0.7 25.9 13.7 22.2 11.6 15.6K

veh. only 17.8 10.9 15.6 9.4 -

Although performance decline is avoidless, QUEST can
still generate valid predictions when packet dropout occurs.
It maintains about 70% performance when the dropout ratio
reaches 0.7. The results suggest that QUEST is relatively
robust when facing query loss, and show the advantage of
query cooperation on robustness to packet dropout.

VI. DISCUSSION ON QUERY COOPERATION

Experimental results of QUEST have reflected the char-
acteristics of query cooperation. In this section, we further
discuss the pros and cons of query cooperation paradigm.

Possible extensions. Standing on the midpoint of instance-
level result cooperation and scene-level feature cooperation,
query cooperation takes both advantages of them, resulting
in more possibilities to explore. Since the query stream is
instance-level, it is more convenient to introduce temporal
information and give the chance to model the individual
motion of every single object. Leveraging temporal features,
the object detection performance will be further boosted
via spatial-temporal cooperation. Similar to single-vehicle
scenario, query cooperation paradigm opens the gate to end-
to-end (E2E) cooperative tracking via a spatial-temporal
query stream. Furthermore, there is a wider ocean to explore,
when the query stream goes beyond perception and flows
throughout the whole pipeline, including perception, predic-
tion, and planning. E2E cooperative driving can expand the
E2E autonomous driving [31] to a system-wide improvement
for intelligent transportation system.

Foreseeable limitation. Behind all the advances, the
limitation is also foreseeable. Since query cooperation is on
the basis of the query stream, it naturally requests all agents
participating in the symbioses to employ a query-based on-
board system. Therefore, the query cooperation adaption for
the hybrid intelligent transportation system deserves further
exploration. In addition, the query alignment among different
transformer-based architectures also needs to be tackled for
widespread use.

VII. CONCLUSION

Aiming at interpretable and flexible cooperative percep-
tion, we propose the concept of query cooperation in this
paper, which enables instance-level feature interaction among
agents via the query stream. To specifically describe the
query cooperation, a representative cooperative perception
framework (QUEST) is proposed. It performs cross-agent
query interaction by fusion and complementation, which
are designed for co-aware objects and unaware objects
respectively. Taking camera-based vehicle-infrastructure co-
operative perception as a typical scenario, we generate the
camera-centric cooperation labels of DAIR-V2X-Seq and
evaluate the proposed framework on it. The experimental
results not only demonstrate the effectiveness but also show
the advantages of transmission flexibility and robustness to
packet dropout. In addition, we discuss the pros and cons
of query cooperation paradigm from the possible extensions
and foreseeable limitations.

From our perspective of view, the query cooperation has
great potential and deserves further exploration. We hope
our work can facilitate the cooperative perception research
for practical applications. Planned future efforts will include
1) adaption for other cooperative tasks, e.g., prediction and
planning, 2) query alignment across agents and time, and 3)
query selection and compression for practical convenience.
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