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Abstract— For semantic segmentation in urban scene under-
standing, RGB cameras alone often fail to capture a clear
holistic topology in challenging lighting conditions. Thermal
signal is an informative additional channel that can bring
to light the contour and fine-grained texture of blurred re-
gions in low-quality RGB image. Aiming at practical RGB-T
(thermal) segmentation, we systematically propose a Spatial-
aware Demand-guided Recursive Meshing (SpiderMesh) frame-
work that: 1) proactively compensates inadequate contextual
semantics in optically-impaired regions via a demand-guided
target masking algorithm; 2) refines multimodal semantic
features with recursive meshing to improve pixel-level semantic
analysis performance. We further introduce an asymmetric data
augmentation technique M-CutOut, and enable semi-supervised
learning to fully utilize RGB-T labels only sparsely available
in practical use. Extensive experiments on MFNet and PST900
datasets demonstrate that SpiderMesh achieves state-of-the-art
performance on standard RGB-T segmentation benchmarks.

I. INTRODUCTION

To realize robust pixel-wise scene understanding in real-
world urban environment, RGB-based semantic segmentation
is often inadequate due to low image quality from poor
lighting conditions, such as nighttime scenes and over-
exposure scenarios (as illustrated in Figure 1 a).

One effective way to overcome this is to dynamically ad-
just the exposure time of cameras. However, this introduces
new challenges such as motion blur under long exposure
time. To amend this, RGB-T brings in thermal sensors that
are relatively robust to variation in illumination conditions
[1]–[13]. Unlike visual cameras that react to visible light
spectrum, thermal sensors capture infrared radiations emitted
by objects [14], which can bring to light the nuanced
texture information about environmental surroundings even
in challenging lighting conditions.

Existing methods on RGB-T segmentation mainly focus
on two aspects: cross-modal feature interaction between
RGB and thermal images, and pixel-wise semantic analysis.
To exploit cross-modality information from RGB-T pairs,
early approaches adopt simple operations such as summa-
tion and concatenation [1]–[3], [6]. Recent attention-based
fusion methods [4], [5], [7]–[13] integrate RGB and thermal
features by taking into consideration their relative context.
However, channel-wise fusion directly overlaps RGB and
thermal features, blind to their relative spatial positions
(Figure 1 b.1). The ‘passive’ spatial-wise integration strategy
directly provides features without asking for real needs
(Figure 1 b.2). To achieve fine-grained fusion for semantic
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Fig. 1. Some RGB regions are blacked out or blurred in nighttime or
over-exposure scenes, while the corresponding thermal images are robust
to varying illumination conditions (a, images from MFNet dataset [1]).
Compared with channel-wise and passive spatial-wise fusion, proactive
spatial-wise fusion can fully exploit extra semantic feature for targeted
region (b). Code is available at GitHub.

analysis, multi-supervision has been applied to semantically
ambiguous regions [5], [6], but boundary supervision highly
relies on accurate pixel-level labeling, which induces high-
cost in practical applications. To better leverage the intrinsic
contextual relativity between paired thermal signals and RGB
features (e.g., to specifically and automatically target dark-
ened areas in RGB images), a more target-guided proactive
integration strategy is needed (Figure 1 b.3).

In order to achieve this goal, we need to answer the
following questions: 1) How to proactively use thermal
signals to compensate the inadequate contextual semantics
in optically-impaired regions? 2) How to utilize a small set
of RGB-T pairs with limited annotations to reach preferable
segmentation performance for practical use?

To address the first challenge, we design a demand-
guided target masking algorithm to enhance the features
of poorly captured regions in RGB images in a ‘request’
manner, via proactive region-level masking with the learned
compensation needs. To alleviate information loss incurred in
encoding and maximize feature utility, we propose a spatial-
aware recursive meshing method, which enhances cross-
modal RGB-T features iteratively for pixel-wise semantic
analysis. To fully exploit limited labeled pairwise data, we
further propose an asymmetric data augmentation technique,
named mono-modal CutOut (M-CutOut), which creates arti-
ficial optically-impaired regions and encourages the network
to learn more compensated features from thermal signals.
An architecture design with semi-supervised learning capa-
bility is also introduced to utilize both natural and artificial
regional complementarity in RGB-T. Extensive experiments
on the popular MFNet and PST900 benchmarks demonstrate

ar
X

iv
:2

30
3.

08
69

2v
2 

 [
cs

.C
V

] 
 2

7 
Se

p 
20

23

https://github.com/leofansq/SpiderMesh


that our proposed framework, Spatial-aware Demand-guided
Recursive Meshing (SpiderMesh), achieves state-of-the-art
performance on RGB-T semantic segmentation.

Our contributions are summarized as follows:
• We propose a systematic framework, termed Spider-

Mesh, for RGB-T semantic segmentation. Specifically, a
demand-guided target masking algorithm is proposed to
directly meet the real needs of RGB-T feature compen-
sation in a proactive ‘request’ manner, and a spatial-
aware recursive meshing method to iteratively refine
multimodal semantic features.

• To fully leverage the limited labeled pairwise data, we
propose a data augmentation technique for RGB-T pairs
and firstly extend the task to the semi-supervised setting.

• SpiderMesh not only achieves state-of-the-art perfor-
mance, but also effectively addresses practical concerns
such as computational complexity, robustness to signal
loss, and manual labeling cost.

II. RELATED WORK

In this section, we briefly review two related topics, image
semantic segmentation and RGB-T segmentation.

A. Image Semantic Segmentation

Image semantic segmentation is a pixel-level scene un-
derstanding task. Since FCN [15] performed learning-based
segmentation, early RGB methods [16], [17] usually adopted
the encoder-decoder network architecture. Deeplabv3 [18]
proposed atrous spatial pyramid pooling (ASPP) to apply
parallel atrous convolutions with different dilation rates,
and SegFormer [19] further boosted the performance. Al-
though RGB segmentation methods have achieved promising
progress in recent years, most methods are still susceptible
to challenging lighting conditions with poor image quality.
RGB-D (depth) methods [20]–[24] leverage depth map to
either enhance the whole RGB signal with depth value
or highlight RGB features of foreground regions based on
depth. However, RGB-D still falls short when additional se-
mantic context for targeted areas is needed for strengthening
poorly captured RGB regions.

B. RGB-T Segmentation

Thermal images can provide complementary information
for those less informative regions in RGB images. Most
of RGB-T fusion employed an explicit aggregation oper-
ation [8]–[13]. MFNet [1] collected an RGB-T semantic
segmentation dataset and proved significantly performance
improvement by utilizing thermal images. Two identical
encoders were employed in RTFNet [2] and FuseSeg [3],
and the thermal features were gradually integrated into
RGB features. FEANet [4] refined the detail features using
attention mechanism to deal with small objects. MFFENet
[6] used spatial attention to emphasize foreground objects.
The multimodal features are fused coarsely with simple
operations (e.g., summation, concatenation) in these ap-
proaches. GMNet [5] proposed different fusion strategies for
shallow and deep features to integrate multi-level features.

Some recent works explored to utilize the power of trans-
former. MFTNet [25] used modified transformer to learn
intraspectral correlations and interspectral interaction, but
introduced additional computational complexity. To further
boost the performance, alignment-based fusion is utilized
via domain adaptation techniques [7], [26]. Different from
existing methods, we propose a systematic demand-guided
approach addressing not only performance but also practi-
cal concerns. We enhance the less informative regions in
RGB images with thermal features via proactive spatial-wise
interaction. Instead of applying multi-supervision [5], [6],
we only utilize semantic supervision considering labeling
cost, and enable the extension of our framework to semi-
supervised semantic segmentation.

III. SPIDERMESH FRAMEWORK

In this section, we describe the proposed SpiderMesh
framework, which consists of demand-guided target masking,
spatial-aware recursive meshing, a novel M-CutOut tech-
nique for data augmentation, and a mutual learning strategy
for semi-supervised adaptation.

A. Overall Architecture

As illustrated in Figure 2, RGB-T semantic segmentation
is technically resolved into cross-modal feature interaction
and pixel-level feature refinement in SpiderMesh framework.
RGB-T pairs are fed into corresponding branches for each
modality. Each branch adopts an encoder-decoder structure
and employs ResNet [27] as backbone for feature extraction.
The number of input channels in the first convolutional layer
of the thermal branch is set to 1. Five encoder layers are
utilized consecutively to extract features. A DTM (demand-
guided target masking) module is embedded after each layer.
Data scale is gradually decreased from H ×W to H

32 × W
32 .

Next, a SRM (spatial-aware recursive meshing) module is
used as the decoder to enhance unsampled features with fine-
grained multimodal semantic features. We utilize bi-linear
interpolation for upsampling. Although the two branches are
treated equally during encoding and decoding, we regard the
RGB branch as the main branch for generating final predic-
tions. Thus, the enhanced thermal feature fe

the is introduced
to the RGB branch and added with enhanced RGB feature
fe
rgb, which is further fed to a classifier. Meanwhile, fe

the is
also fed to a classifier to output an auxiliary prediction. A
Convolutional layer is used as the classifier.

B. Demand-guided Target Masking

To better leverage the regional complementary texture
feature across RGB and thermal signals, we propose a DTM
module, a proactive spatial-wise fusion component whose
architecture is illustrated in Figure 3. The overall feature
interaction is guided by the demand map dynamically learned
via spatial-wise attention. Technically, there are various
implementation options for attention-based operations. We
adopt a statistical approach [28] as an example to demon-
strate our insight of proactive spatial-wise fusion.



Fig. 2. Top: Overall architecture of SpiderMesh; Bottom: RGB-T feature flow in SpiderMesh. Li denotes different layer of the backbone.

Fig. 3. Architecture of DTM module. The less informative regions are
complemented via demand-guided target masking in a ‘request’ manner.

Take the RGB modality as an example, demand-guided
target masking includes the following steps:

Channel-wise Denoising. To eliminate the inevitable cam-
era noise (e.g., over-exposure lighting) before the demand
map generation, frgb ∈ RH×W×C is first denoised via
channel-wise attention. The attention map mc

rgb ∈ R1×1×C

is used to weigh frgb by element-wise multiplication, result-
ing in f c

rgb ∈ RH×W×C .

f c
rgb = mc

rgb · frgb = CA(frgb) · frgb (1)

where CA(·) is channel-wise attention operator.
Attentive Demand Map. To generate spatial-wise demand

for thermal signal complementation, max-pooling and mean-
pooling are utilized for spatial-wise statistics. The pooled
features are concatenated and forwarded to a convolution
operation with a filter in the size of 7 × 7 for further
region-level statistics. After a sigmoid operation, the attentive
demand map ms

rgb ∈ RH×W×1 is obtained, representing the
demand of spatial-wise complementation for f c

rgb.
Demand-guided Fusion. The thermal feature f c

the is
spatial-wise weighted according to the adaptive demand
represented by ms

rgb. Then, f c
rgb is integrated with f c

the

attentively in a ‘request’ manner:

f
′

rgb = f c
rgb +ms

rgb · f c
the

= f c
rgb + SA(f c

rgb) · f c
the

(2)

where SA(·) is spatial-wise attention operator.
For the thermal modality, f

′

the can be obtained likewise.
In addition, input features frgb and fthe are also fused using
summation operation to generate multimodal feature fm for
detailed semantic feature refinement in later stage.

C. Spatial-aware Recursive Meshing

Semantic segmentation is a pixel-level scene understand-
ing task, which relies on fine-grained semantic features
for pixel-wise classification. However, detailed information
loss caused by downsampling is inevitable during encoding.
To compensate information loss and refine the fine-grained
features, we propose a SRM module that leverages the
fused multimodal features in a recursive manner with spatial
awareness. SRM module is composed of a modified ASPP
block [18] and three spatial-aware feature refinement blocks,
as shown in Figure 4.

Fig. 4. Architecture of SRM module. ‘modal’ is replaced with ‘rgb’ or
‘the’ according to which branch it applied in.

For RGB modality, the encoded feature map f
′

rgb4
is

first embedded with more global features via atrous spatial
pyramid pooling. We use three dilation rates (d = 2, 4, 8),
and the number of channels is reduced to 256 after this block.



To refine the fine-grained semantic features, the features of
different receptive fields are recursively introduced via skip-
connection. Instead of simple concatenation of features, we
perform spatial-aware feature refinement to proactively mesh
upsampled features with multimodal features fmi

which
contain rich detailed semantic information from both RGB-
T signals. Considering the complexity, channel reduction is
applied to fmi via convolutional operation. For features with
a scale index i, the refinement step can be formulated as:

fui−1 = E(fui , fmi−1)

= Up(fui)⊕ (Conv(fmi−1) ·ms
ui−1

)

= Up(fui)⊕ (Conv(fmi−1) · SA(Up(fui)))

(3)

where ‘⊕’ is the concatenation operator, ‘SA(·)’ is the
spatial-wise attention operator, and ‘Up(·)’ and ‘Conv(·)’
denote the upsampling and convolution operators, respec-
tively. ms

ui
is the spatial-aware attentive mask generated via

spatial-wise attention operation, which indicates where and
how much the feature needs to be compensated.

The input RGB feature is compensated recursively, which
can be represented by:

fe
rgb = Up(E(E(E(ASPP (f

′

rgb4), fm3
), fm2

), fm1
)) (4)

where ‘ASPP (·)’ is the atrous spatial pyramid pooling.
Similarly, the encoded thermal feature is compensated re-
cursively to generate fe

the.

D. M-CutOut Augmentation

The key to RGB-T segmentation is to fully exploit the
regional complementarity of thermal signals on optically-
invisible regions. The Model is supposed to learn the intrin-
sic contextual relativity between RGB and thermal signals.
However, normal CutOut [29] masks all modalities. Different
from that, M-CutOut cuts out part of the RGB image with
randomly positioned mask M and encourages the model to
recover the masked RGB information with thermal signals,
which is more in line with the nature of the task. To
facilitate the learning of the adaptive cross-modal regional
compensation, the artificial optically-impaired regions are
randomly created. An example is shown in Figure 5.

Fig. 5. An example of M-CutOut. An optically-impaired region is created.

E. Semi-supervised Learning

Benefiting from dual-branch architecture and M-CutOut,
SpiderMesh can be easily extended to semi-supervised seg-
mentation task by leveraging both natural and artificial
regional complementarity in RGB-T (Figure 6).

Both labeled and unlabeled data are provided in semi-
supervised learning tasks. Without loss of generality, let G

Fig. 6. Framework for semi-supervised semantic segmentation.

denote the label for labeled data pairs (X l
rgb, X

l
the) and

(Xu
rgb, X

u
the) denote unlabeled data. When using labeled

data, the network is trained in a supervised manner:

LS = CE(G, hrgb(X
l
rgb)) + CE(G, hthe(X

l
the)) (5)

where ‘hrgb(·)’ and ‘hthe(·)’ denote the two branches in
SpiderMesh, and ‘CE(·)’ is the cross-entropy loss function.
Inspired by the applications of pseudo supervision in RGB
segmentation task [30], [31], the network is trained via cross-
modal mutual learning with unlabeled data for multimodal
alignment-based fusion. We first generate the pseudo label
Yrgb and Ythe using predictions of original input data with
weak augmentations only:

Yrgb = argmax
y

hrgb(y|Xu
rgb) (6)

Ythe can be obtained likewise. Then, we apply cross-modal
pseudo supervision between the generated pseudo label and
the predictions of augmented data using M-CutOut. The
cross-modal supervision is conducive to modality alignment:

LU = CE(Ythe, hrgb(M ·Xu
rgb)) + CE(Yrgb, hthe(X

u
the))

(7)
The losses for supervised and unsupervised training are

combined to form the final training objective:

L = LS + LU (8)

IV. EXPERIMENTS

In this section, we compare our model with other methods
and provide detailed ablation studies on standard RGB-T
semantic segmentation datasets.

A. Experimental Setting

Datasets We evaluate the proposed SpiderMesh on public
datasets of both urban scenes (MFNet [1]) and underground
scenes (PST900 [37]). MFNet Dataset [1] is the only public
dataset on RGB-T semantic segmentation for urban traffic
scenes. It contains 1, 569 pairs of RGB and thermal images
captured simultaneously, which comprises 820 daytime and
749 nighttime paired images. For fair comparison, we follow
the same splitting scheme as in previous work. Batch size is
6, and the input is resized to a fixed size of 480× 640.

PST900 is a challenging underground environment dataset
proposed for the DARPA Subterranean Challenge [37]. It
contains 894 aligned RGB-T pairs collected from diverse
environments with varying lighting conditions. We adopt the
same splitting scheme as in [37] for fair comparison. Input
data is resized to 720× 1280, and batch size is 2.



TABLE I
QUANTITATIVE EVALUATION ON MFNET DATASET. RESULTS OF RGB AND RGB-D SEMANTIC SEGMENTATION METHODS ARE OBTAINED FROM [2],

[6], [7], [25]. THE BEST VALUES ARE MARKED BY BOLD, AND THE SECOND ARE MARKED BY UNDERLINE. ALL SCORES ARE IN %.

Category Methods mIoU Car Person Bike Curve Car-stop Guardrail Color-cone Bump

RGB
UNet [17] 45.1 66.2 60.5 46.2 41.6 17.9 1.8 30.6 44.2

SwinT [32] 49.0 85.2 57.6 61.0 33.2 28.0 2.4 42.7 33.5
BiSeNet [33] 50.0 84.1 63.2 60.1 36.7 25.3 5.0 42.2 35.9

RGB-D SA-Gate [34] 45.8 73.8 59.2 51.3 38.4 19.3 0.0 24.5 48.8
ACNet [35] 46.3 79.4 64.7 52.7 32.9 28.4 0.8 16.9 44.4

RGB-T

FuseSeg [3] 54.5 87.9 71.7 64.6 44.8 22.7 6.4 46.9 47.9
ABMDRNet [7] 54.8 84.8 69.6 60.3 45.1 33.1 5.1 47.4 50.0

FEANet [4] 55.3 87.8 71.1 61.1 46.5 22.1 6.6 55.3 48.9
MFFENet-single [6] 55.5 87.1 74.4 61.3 45.6 30.6 5.2 57.0 40.5

MFTNet [25] 57.3 87.9 66.8 64.4 47.1 36.1 8.4 55.5 62.2
DooDLENet [36] 57.3 86.7 72.2 62.5 46.7 28.0 5.1 50.7 65.8

SpiderMesh-152 (Ours) 57.9 88.1 72.8 63.7 48.4 28.2 8.8 48.2 64.2
SpiderMesh-B4 (Ours) 58.4 89.9 75.3 64.8 51.5 31.4 4.5 54.5 55.9

TABLE II
QUANTITATIVE EVALUATION ON PST900 DATASET. RESULTS OF COMPARED BASELINES ARE OBTAINED FROM [6]. THE BEST VALUES ARE MARKED

BY BOLD, AND THE SECOND ARE MARKED BY UNDERLINE. ALL SCORES ARE IN %.

Category Methods mIoU Survivor Hand-drill Backpack Fire-extinguisher Background
RGB UNet [17] 52.8 31.6 38.3 52.9 43.0 98.0

RGB-D ACNet [35] 71.8 65.2 51.5 83.3 60.0 99.3

RGB-T

RTFNet [2] 57.6 36.4 25.4 75.3 52.0 98.9
PSTNet [37] 68.4 50.0 53.6 69.2 70.1 98.9

ABMDRNet [7] 71.3 62.0 61.5 67.9 66.2 99.0
MFFENet-single [6] 77.1 63.0 66.8 76.6 79.8 99.3

SpiderMesh-152 (Ours) 82.3 71.9 79.7 84.0 76.6 99.4

Implementation Details We mainly employ ResNet-152
as backbone. The encoder is initialized with the pre-trained
weights provided by PyTorch. The initial learning rate is
set to 10−2, and exponential decay scheme is adopted to
gradually decrease the learning rate. We use SGD optimizer
with momentum for training. The momentum and weight
decay are set as 0.9 and 5 × 10−4. The network is trained
until convergence (200 epochs). For training, we apply sev-
eral data augmentation methods, including random flipping,
random cropping, and the proposed M-CutOut. Experiments
are implemented in PyTorch on a server with NVIDIA A30.

B. Main Results

Table I reports the comparison results on MFNet dataset.
Besides ResNet-152, we also report the performance with
MiT-B4 as a reference point for transformer-based approach.
SpiderMesh-B4 achieves the best performance on mIoU
(58.4%), and outperforms baselines on 4 categories (car,
person, bike, and curve). Among them, cars, pedestrians and
bikes are the three most common objects in urban scenes.
SpiderMesh-152 is 0.5% lower than SpiderMesh-B4, with
the best IoU on guardrail and the second best on 3 categories
(car, curve, and bump). Most of RGB-T methods outperforms
both RGB and RGB-D techniques, which demonstrates the
importance of tackling RGB-T segmentation in a task-
specific way to leverage the regional complementarity. The
reported performance of MFFENet-single [6] is only under
semantic supervision for fair comparison. Although the full-
version GMNet can achieve 57.3 % mIoU utilizing multi-
supervision, its performance drops to 53.9% when bound-

ary supervision is not applied [5]. There are performance
fluctuations on the guardrail category since the unbalanced
class distribution (the proportion of the guardrail class is
0.095% [6]). Although SpiderMesh-B4 performs better, the
complexity is also higher than the ResNet-152 version, so
we choose SpiderMesh-152 for the remaining experiments
considering practical application.

To further evaluate the proposed SpiderMesh, we also
compare it with baselines on PST900 dataset, as reported in
Table II. In line with expectations, SpiderMesh consistently
outperforms others on mIoU under diverse underground
scenes. For 4 foreground categories, it achieves the best
performance on 3 (survivor, hand-drill, and backpack). Spi-
derMesh achieves a performance increase of 8.9% on sur-
vivor class over MFFENet-single, by effectively leveraging
regional complementary features from thermal images.

C. Ablation Study

To better understand SpiderMesh, we conduct several
groups of experiments for ablation study on MFNet dataset.

Effect of Each Component. In the baseline network,
multimodal features are only fused at the classifier in the
RGB branch, and normal feature upsampling operations are
adopted. As we can see from Table III, the overall gain of
the three components is 5.5%. Among them, performance
improvement from DTM and M-CutOut are more significant,
thanks to their regional complementation for RGB regions
with thermal images. SRM further compensates the spatial-
wise information loss with fused multimodal features and
leads to an improvement of 0.7%.



TABLE III
ABLATION STUDY ON SPIDERMESH.

Ablated SpiderMesh mIoU (%)
- Baseline 52.4

+ Fusion
Summation during encoding 53.4
Cross-modal weighted fusion 54.5
DTM 55.2

+ Refinement
SRM w/ self-modal feature only 55.4
SRM w/ cross-modal feature only 55.4
SRM 55.9

+ Data aug. normal CutOut 56.0
M-CutOut 57.9

Architecture Design. Firstly, we explore different RGB-T
fusion methods in DTM. The simple feature summation dur-
ing encoding can improve mIoU to 53.4%, but the features
are fused without distinction. The cross-modal weighted
fusion is in a passive ‘post’ manner, where one modality is
spatial-wise weighted via self-attention and then integrated
to the other modality. It performs better than summation,
but is still not as good as the proactive manner in DTM.
Figure 7 shows that the less informative an area is, the
higher its demand for fusion is. For example, the dark
and overexposed areas of RGB images usually have higher
compensation demands, corroborating our hypothesis on the
regional complementary power of thermal signals. Secondly,
we study the design choices for SRM, and the refinement
with fused multimodal feature is a better choice since it
contains rich detailed semantic information from both RGB-
T signals. Besides, the benefit of normal CutOut is limited,
and the replacement to M-CutOut results in a lift of 1.9%.

Fig. 7. Visualization of demand map for requesting cross-modal regional
complementary information. Left and Middle are RGB demand maps in
dazzling-light and nighttime. Right is the thermal demand map in daytime.

Robustness Analysis. It is important to analyze the ro-
bustness of multimodal approaches, as signal loss due to
software/hardware failure is common in practice. To test
SpiderMesh, we manually set the input of a modality to 0
to simulate the signal loss, and evaluate the performance
in daytime and nighttime scenarios. The results of both
branches are reported in Table IV for analysis. Overall, the
performance with inputs from both modalities is the best,
which demonstrates the benefit of leveraging multimodal
information. The performance differences between RGB-
only and thermal-only input indicate that thermal is the more
dominant modality due to its high reliability under poor
lighting conditions. The slight advantage of the RGB branch
comes from further feature fusion at the classifier. As we can
see, SpiderMesh can still generate valid predictions when

TABLE IV
ROBUSTNESS ANALYSIS ON MODALITY SIGNAL LOSS (%).

Input modality Branch Daytime Nighttime All time

RGB + thermal RGB 52.0 56.0 57.9
Thermal 51.0 55.7 57.3

RGB only RGB 40.1 32.5 39.6
Thermal 39.8 32.4 39.2

Thermal only RGB 41.7 51.1 50.5
Thermal 41.6 50.8 50.2

facing input signal loss.
Complexity Analysis We obtain several versions of Spi-

derMesh by replacing the backbone. The complexity and
corresponding performances are summarized in Table V.
SpiderMesh-B4 achieves the best performance with the
highest complexity. Considering the computational cost in
practice, SpiderMesh-152 achieves a better tradeoff and has
advantages on both performance and complexity compared
with the two representative methods also using ResNet-152.
The model can be more lightweight by employing lighter
backbone, and even SpiderMesh-50 (54.4%) can be on par
with other RGB-T approaches, like FuseSeg [3] (54.5%).

TABLE V
COMPLEXITY ANALYSIS ON DIFFERENT VERSIONS OF SPIDERMESH.

Version Backbone GFlops mIoU (%)
RTFNet [2] ResNet-152 290.6 53.2

MFTNet [25] ResNet-152 330.6 57.3
SpiderMesh-50 ResNet-50 168.2 54.4

SpiderMesh-101 ResNet-101 214.0 56.1
SpiderMesh-152 ResNet-152 259.8 57.9
SpiderMesh-B4 MiT-B4 398.8 58.4

D. Evaluation on Semi-supervision

We further evaluate SpiderMesh under semi-supervision
setting. The 784 labeled images are randomly split into two
subsets, 392 images are regarded as unlabeled subset. We
make sure that each class appears in the labeled subset. Mak-
ing use of unlabeled data, SpiderMesh yields a performance
lift of 2.1% (from 53.2% to 55.3%). The performance in
low-data regime is comparable with that of other methods
under full supervision as reported in Table I. Considering the
randomness in splitting scheme, we conduct 5 experiments
with different partitions, and the gain is 2.1±0.1% leveraging
unlabeled pairwise RGB-T data.

V. CONCLUSION

In this paper, we manage to fully exploit the regional
complementarity of thermal signals on optically-invisible
regions. The systematic SpiderMesh framework is proposed.
DTM proactively compensates the features of less informa-
tive regions via demand-guided target masking in a ‘request’
manner, SRM recursively refines detailed semantic features
for segmentation task. M-CutOut is proposed to create new
optically-impaired regions and encourage the model to learn
compensated features. Besides, a semi-supervised setting
is first explored by leveraging both natural and artificial
regional complementarity, which deserves further study.
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